podospora anserina
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 37)

H-INDEX

49
(FIVE YEARS 4)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3319
Author(s):  
Verena Warnsmann ◽  
Jana Meisterknecht ◽  
Ilka Wittig ◽  
Heinz D. Osiewacz

The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2775
Author(s):  
Timo Löser ◽  
Aljoscha Joppe ◽  
Andrea Hamann ◽  
Heinz D. Osiewacz

Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.


mBio ◽  
2021 ◽  
Author(s):  
Antonio de Jesús López-Fuentes ◽  
Karime Naid Nachón-Garduño ◽  
Fernando Suaste-Olmos ◽  
Ariadna Mendieta-Romero ◽  
Leonardo Peraza-Reyes

Meiosis consists of a reductional cell division, which allows ploidy maintenance during sexual reproduction and which provides the potential for genetic recombination, producing genetic variation. Meiosis constitutes a process of foremost importance for eukaryotic evolution.


2021 ◽  
Author(s):  
Corinne Clave ◽  
Witold Dyrka ◽  
Alexandra Granger-Farbos ◽  
Benoit Pinson ◽  
Sven Joachim Saupe ◽  
...  

Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction, controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina. We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ~5 kDa C-terminal fragment during the cell death reaction in presence of a subtilisin-like serine protease, termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in a heterologous host (Saccharomyces cerevisiae) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analysing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which in some cases correspond to the N-terminal effector domain of NOD-like receptor proteins (NLRs). This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.


Author(s):  
Valérie Gautier ◽  
Emilie Levert ◽  
Tatiana Giraud ◽  
Philippe Silar

Abstract Melanins are pigments used by fungi to withstand various stresses and to strengthen vegetative and reproductive structures. In Sordariales fungi, their biosynthesis starts with a condensation step catalyzed by an evolutionary-conserved polyketide synthase. Here we show that complete Inactivation of this enzyme in the model ascomycete Podospora anserina through targeted deletion of the PaPks1 gene results in reduced female fertility, in contrast to a previously analyzed nonsense mutation in the same gene that retains full fertility. We also show the utility of PaPks1 mutants for detecting rare genetic events in P. anserina, such as parasexuality and possible fertilization and/or apomixis of nuclei devoid of mating type gene.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
F. Carlier ◽  
M. Li ◽  
L. Maroc ◽  
R. Debuchy ◽  
C. Souaid ◽  
...  

Abstract Background Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. Results We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3–9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3–9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. Conclusions Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.


2021 ◽  
Vol 7 (4) ◽  
pp. 263
Author(s):  
Heinz D. Osiewacz ◽  
Lea Schürmanns

Research on Podospora anserina unraveled a network of molecular pathways affecting biological aging. In particular, a number of pathways active in the control of mitochondria were identified on different levels. A long-known key process active during aging of P. anserina is the age-related reorganization of the mitochondrial DNA (mtDNA). Mechanisms involved in the stabilization of the mtDNA lead to lifespan extension. Another critical issue is to balance mitochondrial levels of reactive oxygen species (ROS). This is important because ROS are essential signaling molecules, but at increased levels cause molecular damage. At a higher level of the network, mechanisms are active in the repair of damaged compounds. However, if damage passes critical limits, the corresponding pathways are overwhelmed and impaired molecules as well as those present in excess are degraded by specific enzymes or via different forms of autophagy. Subsequently, degraded units need to be replaced by novel functional ones. The corresponding processes are dependent on the availability of intact genetic information. Although a number of different pathways involved in the control of cellular homeostasis were uncovered in the past, certainly many more exist. In addition, the signaling pathways involved in the control and coordination of the underlying pathways are only initially understood. In some cases, like the induction of autophagy, ROS are active. Additionally, sensing and signaling the energetic status of the organism plays a key role. The precise mechanisms involved are elusive and remain to be elucidated.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thierry Bardin ◽  
Asen Daskalov ◽  
Sophie Barrouilhet ◽  
Alexandra Granger-Farbos ◽  
Bénédicte Salin ◽  
...  

ABSTRACT In filamentous fungi, NLR-based signalosomes activate downstream membrane-targeting cell death-inducing proteins by a mechanism of amyloid templating. In the species Podospora anserina, two such signalosomes, NWD2/HET-S and FNT1/HELLF, have been described. An analogous system involving a distinct amyloid signaling motif, termed PP, was also identified in the genome of the species Chaetomium globosum and studied using heterologous expression in Podospora anserina. The PP motif bears resemblance to the RIP homotypic interaction motif (RHIM) and to RHIM-like motifs controlling necroptosis in mammals and innate immunity in flies. We identify here a third NLR signalosome in Podospora anserina comprising a PP motif and organized as a two-gene cluster encoding an NLR and an HELL domain cell death execution protein termed HELLP. We show that the PP motif region of HELLP forms a prion we term [π] and that [π] prions trigger the cell death-inducing activity of full-length HELLP. We detect no prion cross-seeding between HET-S, HELLF, and HELLP amyloid motifs. In addition, we find that, like PP motifs, RHIMs from human RIP1 and RIP3 kinases are able to form prions in Podospora and that [π] and [Rhim] prions partially cross-seed. Our study shows that Podospora anserina displays three independent cell death-inducing amyloid signalosomes. Based on the described functional similarity between RHIM and PP, it appears likely that these amyloid motifs constitute evolutionarily related cell death signaling modules. IMPORTANCE Amyloids are β-sheet-rich protein polymers that can be pathological or display a variety of biological roles. In filamentous fungi, specific immune receptors activate programmed cell death execution proteins through a process of amyloid templating akin to prion propagation. Among these fungal amyloid signaling sequences, the PP motif stands out because it shows similarity to the RHIM, an amyloid sequence controlling necroptotic cell death in mammals. We characterized an amyloid signaling system comprising a PP motif in the model species Podospora anserina, thus bringing to three the number of independent amyloid signaling cell death pathways described in that species. We then showed that human RHIMs not only propagate as prions in P. anserina but also partially cross-seed with fungal PP prions. These results indicate that, in addition to showing sequence similarity, the PP and RHIM motifs are at least partially functionally related, supporting a model of long-term evolutionary conservation of amyloid signaling mechanisms from fungi to mammals.


Author(s):  
Fanny E Hartmann ◽  
S Lorena Ament-Velásquez ◽  
Aaron A Vogan ◽  
Valérie Gautier ◽  
Stephanie Le Prieur ◽  
...  

Abstract Sex chromosomes often carry large non-recombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8 Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudo-homothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of 10 P. anserina strains and six closely related pseudo-homothallic Podospora species. Importantly, the size of the non-recombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The non-recombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, trans-specific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but non-null outcrossing rates in nature in these pseudo-homothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.


2021 ◽  
Author(s):  
◽  
Daniela Heinz

Ziel dieser Arbeit war es, einen genaueren Einblick in die Rolle von PaCLPXP für den Energiemetabolismus von P. anserina zu erhalten und mögliche Komponenten zu identifizieren, welche wichtig für die Langlebigkeit der PaClpP-Deletionsmutante sind. Folgende neue Erkenntnisse konnten hierbei gewonnen werden: 1. Die Substrat-Analyse durch eine Cycloheximid-Behandlung und anschließender Proteom-Analyse legte erfolgreich eine Reihe potentieller bisher nicht bekannter Substrate von PaCLPP offen. Interessanterweise waren unter den identifizierten Proteinen viele ribosomale Untereinheiten und Komponenten verschiedener Stoffwechselwege des Energiemetabolismus zu finden. Am auffälligsten unter diesen Substraten war die extreme Anreicherung eines Retikulon-ähnlichen Proteins, das einen neuen Aspekt der möglichen molekularbiologischen Rolle von PaCLPP in P. anserina andeutet. 2. Durch die Zugabe von Butyrat zum Medium, konnte erfolgreich die Autophagie sowohl im P. anserina Wildtyp als auch in der PaClpP-Deletionsmutante reduziert werden. Diese Verminderung der Autophagie sorgt bei ΔPaClpP für eine Verkürzung der Lebensspanne. Dieser Effekt ist spezifisch für die PaClpP-Deletionsmutante, während die Auswirkung von Butyrat auf den Wildtyp nur marginal ist. Dieses Ergebnis untermauert frühere Analysen dieser Deletionsmutante, welche besagen, dass die Langlebigkeit von ΔPaClpP Autophagie abhängig ist (Knuppertz und Osiewacz, 2017). 3. Die Metabolom-Analyse von ΔPaClpP im Vergleich zum Wildtyp zeigt, dass das Fehlen der PaCLPP zu Veränderungen in der Menge der Metaboliten der Glykolyse und des Citratzyklus kommt. Außerdem sind die Mengen der meisten Aminosäuren und der Nukleotide betroffen. Diese Analyse beweist, dass das Fehlen dieser mitochondrialen Protease weitreichende Folgen für die ganze Zelle hat. Durch die signifikante Verringerung von ATP und die Anreicherung von AMP in jungen ΔPaClpP-Stämmen und durch den Umstand der gesteigerten Autophagie in dieser Mutante, fiel das Augenmerk auf die AMPK. Dieses veränderte AMP/ATP-Verhältnis ist ein Indiz für eine gesteigerte AMPK-Aktivität und könnte auch den Umstand der gesteigerten Autophagie in ΔPaClpP erklären. 4. Das Gen codierend für die katalytische α-Untereinheit der AMPK (PaSnf1) konnte erfolgreich in P. anserina deletiert werden. Das Fehlen von PaSNF1 führt zu einer reduzierten Wuchsrate, eine beeinträchtige weibliche Fertilität und eine verzögerte Sporenreifung. Es konnte gezeigt werden, dass die Autophagie infolge einer PaSnf1-Deletion nicht gänzlich unterdrückt wird, PaSNF1 allerdings für die Stress-induzierte Autophagie notwendig ist. Überraschenderweise führt die Abwesenheit von PaSNF1 zu einer verlängerten Lebensspanne im Vergleich zum Wildtyp. Die meisten Effekte infolge einer PaSnf1-Deletion konnten durch die Einbringung eines FLAG::PaSNF1-Konstrukts komplementiert werden. 5. Eine gleichzeitige PaSnf1 und PaClpP-Deletion führt zu eine unerwarteten, extremen Lebenspannenverlängerung, die die Verlängerung der Lebensspanne bei der PaClpP-Deletionsmutante noch übertrifft. Interessanterweise geht dieser Phänotyp nicht mit einer erhöhten Autophagie einher. Des Weiteren konnte beobachtet werden, dass das Fehlen von PaSNF1 sowohl in ΔPaSnf1 als auch in ΔPaSnf1/ΔPaClpP zu einer veränderten Mitochondrien-Morphologie im Alter führt. Die Abwesenheit von PaSNF1 verursacht, dass die Stämme auch im Alter (20d) noch überwiegend filamentöse Mitochondrien aufweisen. Zudem zeigen die drei analysierten Deletionsstämme (ΔPaSnf1, ΔPaClpP und ΔPaSnf1/ΔPaClpP) massive Einschränkungen wenn sie auf die mitochondriale Funktion angewiesen sind. 6. Auffallend war, dass bei ΔPaSnf1, ΔPaClpP und bei ΔPaSnf1/ΔPaClpP die Stämme mit dem Paarungstyp „mat-“ langlebiger sind als die Stämme mit dem Paarungstyp „mat+“. Dieser Effekt ist bei der ΔPaSnf1/ΔPaClpP-Doppelmutante am stärksten ausgeprägt. Weitere Untersuchungen dazu ergaben, dass die Paarungstypen immer dann eine Rolle spielen, wenn die Stämme mitochondrialem Stress ausgesetzt, oder aber auf die mitochondriale Funktion angewiesen sind. Verantwortlich für diese Unterschiede sind zwei rmp1-Allele, die mit den unterschiedlichen Paarungstyp-Loci gekoppelt sind und mit dem jeweiligen Paarungstyp-Locus vererbt werden (rmp1-1 mit „mat-“; rmp1-2 mit „mat+“).


Sign in / Sign up

Export Citation Format

Share Document