scholarly journals Tail distribution estimates of the mixed-fractional CEV model

2021 ◽  
Vol 5 (1) ◽  
pp. 371-379
Author(s):  
Nguyen Thu Hang ◽  
◽  
Pham Thi Phuong Thuy ◽  

The aim of this paper is to study the tail distribution of the CEV model driven by Brownian motion and fractional Brownian motion. Based on the techniques of Malliavin calculus and a result established recently in [<a href="#1">1</a>], we obtain an explicit estimate for tail distributions.

2020 ◽  
Vol 28 (4) ◽  
pp. 291-306
Author(s):  
Tayeb Bouaziz ◽  
Adel Chala

AbstractWe consider a stochastic control problem in the case where the set of the control domain is convex, and the system is governed by fractional Brownian motion with Hurst parameter {H\in(\frac{1}{2},1)} and standard Wiener motion. The criterion to be minimized is in the general form, with initial cost. We derive a stochastic maximum principle of optimality by using two famous approaches. The first one is the Doss–Sussmann transformation and the second one is the Malliavin derivative.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Yuquan Cang ◽  
Junfeng Liu ◽  
Yan Zhang

We study the asymptotic behavior of the sequenceSn=∑i=0n-1K(nαSiH1)(Si+1H2-SiH2),asntends to infinity, whereSH1andSH2are two independent subfractional Brownian motions with indicesH1andH2, respectively.Kis a kernel function and the bandwidth parameterαsatisfies some hypotheses in terms ofH1andH2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motionSH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.


Author(s):  
Stefano Bonaccorsi ◽  
Margherita Zanella

We study the existence and regularity of densities for the solution of a nonlinear heat diffusion with stochastic perturbation of Brownian and fractional Brownian motion type: we use the Malliavin calculus in order to prove that, if the nonlinear term is suitably regular, then the law of the solution has a smooth density with respect to the Lebesgue measure.


Author(s):  
Kai He

In this paper, we construct fractional Lévy processes for any parameter H ∈ (0, 1), as the generalization of the fractional Brownian motion. By using Malliavin calculus, we also define the stochastic integral for fractional Lévy processes.


Sign in / Sign up

Export Citation Format

Share Document