scholarly journals ANALISA PERBANDINGAN METODE SIMULATED ANNEALING DAN LARGE NEIGHBORHOOD SEARCH UNTUK MEMECAHKAN MASALAH LOKASI DAN RUTE KENDARAAN DUA ESELON

2020 ◽  
Vol 4 (1) ◽  
pp. 35-46
Author(s):  
Winarno (Universitas Singaperbangsa Karawang) ◽  
A. A. N. Perwira Redi (Universitas Pertamina)

AbstractTwo-echelon location routing problem (2E-LRP) is a problem that considers distribution problem in a two-level / echelon transport system. The first echelon considers trips from a main depot to a set of selected satellite. The second echelon considers routes to serve customers from the selected satellite. This study proposes two metaheuristics algorithms to solve 2E-LRP: Simulated Annealing (SA) and Large Neighborhood Search (LNS) heuristics. The neighborhood / operator moves of both algorithms are modified specifically to solve 2E-LRP. The proposed SA uses swap, insert, and reverse operators. Meanwhile the proposed LNS uses four destructive operator (random route removal, worst removal, route removal, related node removal, not related node removal) and two constructive operator (greedy insertion and modived greedy insertion). Previously known dataset is used to test the performance of the both algorithms. Numerical experiment results show that SA performs better than LNS. The objective function value for SA and LNS are 176.125 and 181.478, respectively. Besides, the average computational time of SA and LNS are 119.02s and 352.17s, respectively.AbstrakPermasalahan penentuan lokasi fasilitas sekaligus rute kendaraan dengan mempertimbangkan sistem transportasi dua eselon juga dikenal dengan two-echelon location routing problem (2E-LRP) atau masalah lokasi dan rute kendaraan dua eselon (MLRKDE). Pada eselon pertama keputusan yang perlu diambil adalah penentuan lokasi fasilitas (diistilahkan satelit) dan rute kendaraan dari depo ke lokasi satelit terpilih. Pada eselon kedua dilakukan penentuan rute kendaraan dari satelit ke masing-masing pelanggan mempertimbangan jumlah permintaan dan kapasitas kendaraan. Dalam penelitian ini dikembangkan dua algoritma metaheuristik yaitu Simulated Annealing (SA) dan Large Neighborhood Search (LNS). Operator yang digunakan kedua algoritma tersebut didesain khusus untuk permasalahan MLRKDE. Algoritma SA menggunakan operator swap, insert, dan reverse. Algoritma LNS menggunakan operator perusakan (random route removal, worst removal, route removal, related node removal, dan not related node removal) dan perbaikan (greedy insertion dan modified greedy insertion). Benchmark data dari penelitian sebelumnya digunakan untuk menguji performa kedua algoritma tersebut. Hasil eksperimen menunjukkan bahwa performa algoritma SA lebih baik daripada LNS. Rata-rata nilai fungsi objektif dari SA dan LNS adalah 176.125 dan 181.478. Waktu rata-rata komputasi algoritma SA and LNS pada permasalahan ini adalah 119.02 dan 352.17 detik.

2021 ◽  
Vol 6 (4) ◽  
pp. 67-76
Author(s):  
Alireza Mohamadi-Shad ◽  
Hamed Niakan ◽  
Hasan Manzour

In this paper we proposed a new variable neighborhood search (VNS) for solving the location- routing problem with considering capacitated depots and vehicles. A set of capacitated vehicles, a set of depots with restricted capacities, and associated opening costs, and a set of customers with deterministic demands are given. The problem aims to determine the depots to be opened, fleet assignment to each depot, and the routes to be performed to satisfy the demand of the customers. The objective is to minimize the total costs of the open depots, the setup cost associated with the used vehicles, and transportation cost. We proposed a new VNS which is augmented with a probabilistic acceptance criterion as well as a set of efficient local searches. The computational results implemented on four well-known data sets demonstrate that the proposed algorithm is competitive with other well- known algorithms while reaching many best-known solutions and updating six best new results with reasonable computational time. Conclusions and future research avenues close the paper.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zixuan Yu ◽  
Ping Zhang ◽  
Yang Yu ◽  
Wei Sun ◽  
Min Huang

Due to huge amount of greenhouse gases emission (such as CO2), freight has been adversely affecting the global environment in facilitating the global economy. Therefore, green vehicle routing problem (GVRP), aiming to minimize the total carbon emissions in the transportation, has become a hot issue. In this paper, an adaptive large neighborhood search (ALNS) algorithm is proposed to solve large-scale instances of GVRP. The core of ALNS algorithm is destroy operators and repair operators. In the destroy operators, a new removal heuristic applying to the characteristics of GVRP is proposed. The heuristic can quickly remove customers who bring a large amount of carbon emissions with pertinence, and these customers may be arranged more properly in future repair operators. In the repair operators, a fast insertion method is developed. In the fast insertion method, the feasibility of a new route is judged by checking the constraints of partial customers after the inserted customer, instead of checking the constraints of all customers. Thus, the computational time of the ALNS algorithm is greatly saved. Computational experiments were performed on Solomon benchmark with 100 customers and Homberger benchmark instances with up to 1000 customers. Given the same computational time, the proposed ALNS improves the average accuracy by 8.49% compared with the classic ALNS. In the optimal situation, the improvement can achieve 33.61%.


2021 ◽  
Vol 12 (3) ◽  
pp. 305-320 ◽  
Author(s):  
Siwaporn Suksee ◽  
Sombat Sindhuchao

This research proposes a heuristic to solve the problem of the location selection of incinerators and the vehicle routing of infectious waste collection for hospitals in the Northeast of Thailand. The developed heuristic is called the Greedy Randomized Adaptive Large Neighborhood Search Procedure (GRALNSP)and applies the principles of the Greedy Randomized Adaptive Search Procedure (GRASP) and Adaptive Large Neighborhood Search (ALNS) in the local search. The results from GRALNSP are compared with those from the exact method processed by the A Mathematical Programming Language (AMPL) program. For small-sized problems, experiments showed that both methods provided no different results with the global optimal solution, but GRALNSP required less computational time. When the problems were larger-scale and more complicated, AMPL could not find the optimal solution within the limited period of computational time while GRALNSP provided better results with much less computational time. In solving the case study with GRALNSP, the result shows that the suitable locations for opening infectious waste incinerators are the locations of Pathum Ratwongsa district, Amnat Charoen province and Nam Phong district, Khonkaen province. An incinerator with a burning capacity of 600 kilogram/hour is used at both locations. The monthly total distances for infectious waste collection are 24,055.24 and 38,401.88 kilometers, respectively, and the lowest total cost is 6,268,970.40 baht per month.


Algorithms ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 243 ◽  
Author(s):  
Grigorios D. Konstantakopoulos ◽  
Sotiris P. Gayialis ◽  
Evripidis P. Kechagias ◽  
Georgios A. Papadopoulos ◽  
Ilias P. Tatsiopoulos

The Vehicle Routing Problem with Time Windows (VRPTW) is an NP-Hard optimization problem which has been intensively studied by researchers due to its applications in real-life cases in the distribution and logistics sector. In this problem, customers define a time slot, within which they must be served by vehicles of a standard capacity. The aim is to define cost-effective routes, minimizing both the number of vehicles and the total traveled distance. When we seek to minimize both attributes at the same time, the problem is considered as multiobjective. Although numerous exact, heuristic and metaheuristic algorithms have been developed to solve the various vehicle routing problems, including the VRPTW, only a few of them face these problems as multiobjective. In the present paper, a Multiobjective Large Neighborhood Search (MOLNS) algorithm is developed to solve the VRPTW. The algorithm is implemented using the Python programming language, and it is evaluated in Solomon’s 56 benchmark instances with 100 customers, as well as in Gehring and Homberger’s benchmark instances with 1000 customers. The results obtained from the algorithm are compared to the best-published, in order to validate the algorithm’s efficiency and performance. The algorithm is proven to be efficient both in the quality of results, as it offers three new optimal solutions in Solomon’s dataset and produces near optimal results in most instances, and in terms of computational time, as, even in cases with up to 1000 customers, good quality results are obtained in less than 15 min. Having the potential to effectively solve real life distribution problems, the present paper also discusses a practical real-life application of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document