The Effect of an External Shield on the Efficiency of an Induction-Type Linear-Pulse Electromechanical Converter

2018 ◽  
Vol 89 (4) ◽  
pp. 275-281 ◽  
Author(s):  
V. F. Bolyukh ◽  
V. G. Dan’ko ◽  
S. V. Oleksenko
2021 ◽  
Vol 2021 (3) ◽  
pp. 28-36
Author(s):  
V.F. Bolyukh ◽  
◽  
I.S. Shchukin ◽  
◽  
◽  
...  

The purpose of the article is to evaluate the efficiency of an induction-type linear pulse electromechanical converter (LPEC) when operating in shock-power mode and excitation from an alternating voltage source (AVS) in comparison with excitation from a capacitive energy storage (CES). A mathematical model of an induction-type LPEC has been developed both when excited by a unipolar pulse from a CES and from an AVS using lumped parameters of the windings, which takes into account the interrelated electromagnetic, mechanical and thermal processes. It has been found that when the LPEC is excited from the AVS with a voltage frequency of 50 Hz, the electrodynamic force takes on a periodic decaying character with a significant prevalence of positive components of forces over negative ones. The maximum value of the force is much less, and the value of its impulse is much greater than in the LPEC, excited from the CES. With an increase in the frequency of the AVS voltage from 50 to 150 Hz, the highest value of the current density of the inductor winding decreases, and in the armature winding it increases. The greatest values of force and impulse of force are realized at a voltage frequency of 150 Hz. With an increase in the AVS frequency, the relative indicator of the efficiency of the LPEC increases. References 15, figures 4.


Author(s):  
Vladimir F. Bolyukh ◽  
Igor I. Katkov

Abstract Linear pulse electromechanical converters (LPEC) of induction type allow providing a high speed of the actuating element in the short active section and creating powerful power impulses with its insignificant movement. One of the ways to improve the electromechanical indicators of LPEC is the formation of current excitation pulses in the inductor using electronic power supply circuits containing a capacitive energy storage device. This publication is a continuation of our previous work on the influence of different parameters and conditions on the performance of LPEC. Using the developed chain mathematical model, recurrent relations are obtained for calculating the interconnected electromagnetic, mechanical and thermal parameters of LPEC. It has been established that the speed and power electromechanical indicators of LPEC with aperiodic excitation pulse are better than those of LPEC with unipolar excitation, but worse than those of LPEC with oscillating-damped excitation pulse. LPEC with a unipolar excitation pulse, by the end of the working cycle, the smallest temperatures of the inductor and the armature are observed, while for LPEC with a oscillating-damped excitation pulse, the greatest efficiency is ensured, being 24.88%. The highest speed and power electromechanical indicators are provided at LPEC with a step-aperiodic excitation pulse. Experimental studies of LPEC were conducted when operating as an electromechanical accelerator and a shock-power device. In studies of LPEC, a piezoelectric transducer was used as a shock-power device, which converted mechanical vibrations arising from the impact of the striker on the impact plate into electrical signals. In studies of LPEC, a displacement sensor was used as an electromechanical accelerator. It was established experimentally that the movement of the armature begins with a delay relative to the moment of occurrence of the current pulse and is almost linear in the initial part of the acceleration.


Sign in / Sign up

Export Citation Format

Share Document