storage device
Recently Published Documents


TOTAL DOCUMENTS

1619
(FIVE YEARS 863)

H-INDEX

52
(FIVE YEARS 27)

2022 ◽  
Vol 34 (4) ◽  
pp. 0-0

Medical sensors are implanted within the vital organs of human body to record and monitor the vital signs of pulse rate, heartbeat, electrocardiogram, body mass index, temperature, blood pressure, etc. to ensure their effective functioning. These are monitored to detect patient’s health from anywhere and at any time. The Wireless Sensor Networks are embedded in the form of Body Area Nets and are capable of sensing and storing the information on a digital device. Later this information could be inspected or even sent to a remotely located storage device specifically (server or any public or private cloud for analysis) so that a medical doctor can diagnose the present medical condition of a person or a patient. Such a facility would be of immense help in the event of an emergency such as a sudden disaster or natural calamity where communication is damaged, and the potential sources become inaccessible. The aim of this paper is to create a mobile platform using Mobile Ad hoc Network to support healthcare connectivity and treatment in emergency situations.


2022 ◽  
Vol 27 (1) ◽  
pp. 1-24
Author(s):  
Bo Li ◽  
Guoyong Shi

Since the memristor emerged as a programmable analog storage device, it has stimulated research on the design of analog/mixed-signal circuits with the memristor as the enabler of in-memory computation. Due to the difficulty in evaluating the circuit-level nonidealities of both memristors and CMOS devices, SPICE-accuracy simulation tools are necessary for perfecting the art of neuromorphic analog/mixed-signal circuit design. This article is dedicated to a native SPICE implementation of the memristor device models published in the open literature and develops case studies of applying such a circuit simulation with MOSFET models to study how device-level imperfections can make adversarial effects on the analog circuits that implement neuromorphic analog signal processing. Methods on memristor stamping in the framework of modified nodal analysis formulation are presented, and implementation results are reported. Furthermore, functional simulations on neuromorphic signal processing circuits including memristors and CMOS devices are carried out to validate the effectiveness of the native SPICE implementation of memristor models from the perspectives of simulation accuracy, efficiency, and convergence for large-scale simulation tasks.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 254
Author(s):  
Te-Chun Hung ◽  
Tsong-Shing Lee ◽  
Kuan-Chieh Huang ◽  
Yu-Hsiang Chen

This study proposes a design of a modified-bridge circuit with a master–slave input supply mechanism for ozone-driven system applications. Because the single-source supply design is becoming the mainstream choice in the existing ozone-driven systems, the input supply reliability of the ozone-driven system is crucial. Therefore, this proposed design involves a modified-bridge circuit combined with inductors and transistors, which can be augmented with the energy storage device as a backup source to improve the reliability of the input supply for the ozone-driven system. In addition, considering that the original source directly connected to DC BUS can re-charge the energy storage device, the energy recycling operation mode is designed in this proposed system to extend the duration of the energy storage device, which improves the supply reliability of the ozone-driven system further. To validate this proposed system, both model formulation and hardware realization are assessed through different test scenarios. Experimental outcomes of these tests confirm the practicality of the proposed design.


2022 ◽  
Author(s):  
Wenhan Zhao ◽  
Junqiao Wang ◽  
Ran Li ◽  
Bin Zhang

Abstract In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and high absorptivity is proposed. The MMA consists of two silver layers separated by a dielectric layer. Its top resonant element is constituted by two concentric ring resonators connected with four strips. Based on electromagnetic field simulation, the proposed MMA has two narrow absorption peaks with an absorption rate of 99.9% at 711 nm and 99.8% at 830 nm, and the corresponding line width of the two absorption peaks are only 9.7 nm and 9.8 nm. The dual-band MMA shows high absorptivity under wide incident angles. The simulated field pattern shows that dual-band perfect absorption is the combined result of the interaction of two concentric ring resonators and unit cell coupling. In addition, the hexapole plasmon mode can be observed at the outer ring at one absorption peak. The narrow plasmon resonance has a potential application in optical sensing, and can be used to measure the concentration of aqueous glucose with two frequency channels. The proposed MMA with high absorptivity is simple to manufacture, and has other potential applications, such as narrow-band filters, energy storage device, and so on.


2022 ◽  
Vol 14 (4) ◽  
pp. 35-42
Author(s):  
V. Zolnikov ◽  
F. Makarenko ◽  
I. Zhuravleva ◽  
Elena Popova ◽  
Yu. Gridnev ◽  
...  

The paper considers circuit engineering methods for protecting the electronic component base from the effects of heavy charged particles. One of the main methods is to increase the capacity of the device, which leads to an increase in the capacity of diffusion regions and a decrease in the frequency of single events. The structure of a capacitor is shown, which is connected to various nodes of the circuit to increase the sensitivity of the capacitance of the node. The article focuses on the method of using active RC circuits in the feedback circuit of a storage device cell. The advantages and disadvantages of the methods of using a storage device cell with internal redundancy are noted. The paper shows that the use of circuit engineering methods will provide the required level of fault and fault tolerance to the effects of heavy charged particles.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 338
Author(s):  
Fernando Davalos Hernandez ◽  
Rahim Samanbakhsh ◽  
Federico Martin Ibanez ◽  
Fernando Martin

Energy Storage Systems (ESS) are an attractive solution in environments with a high amount of renewable energy sources, as they can improve the power quality in such places and if required, can extend the integration of more renewable sources of energy. If a large amount of power is needed, then supercapacitors are viable energy storage devices due to their specific power, allowing response times that are in the range of milliseconds to seconds. This paper details the design of an ESS that is based on a modular multilevel converter (MMC) with bidirectional power flow, which reduces the number of cascaded stages and allows the supercapacitors SCs to be connected to the grid to perform high-power transfers. A traditional ESS has four main stages or subsystems: the energy storage device, the balancing system, and the DC/DC and DC/AC converters. The proposed ESS can perform all of those functions in a single circuit by adopting an MMC topology, as each submodule (SM) can self-balance during energy injection or grid absorption. This article analyses the structure in both power flow directions and in the control loops and presents a prototype that is used to validate the design.


2022 ◽  
Vol 905 ◽  
pp. 147-159
Author(s):  
Si Meng Zhang

Supercapacitor is a kind of effective energy storage device with merits such as high power density, long cycling life and so on, but their application is limited nowadays compared to the application of batteries. One important restriction is because of the serious self-discharge in supercapacitors, and how to conquer the self-discharge problem is an important issue. In this article we propose an effective way to reduce self-discharge of the supercapacitor by carefully designing of activated carbon (ACs) electrodes and water-in salt electrolyte. The electrochemical characterization shows that our supercapacitor can have the ability to reduce self-discharge.


2022 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
Oskar Ronan ◽  
Clive Downing ◽  
Valeria Nicolosi

Lithium-sulfur battery is one of promising candidates for next-generation energy storage device due to the sulfur cathode material with low cost and nontoxicity, and super high theoretical energy density (nearly 2600Wh kg−1) and specific energy (2567Wh kg−1). Sulphur, however, poses a few interesting challenges before it can gain widespread utilisation. The biggest issue is known as the polysulphide shuttling effect which contributes to rapid capacity loss after cycling. Accurate characterisation of sulphur cathodic materials becomes critical to our understanding polysulphide shuttling effect in the quest of finding mitigating solutions. Electron microscopy is playing a crucial role in battery research in determining structure–property–function relations. However, sulphur undergoes sublimation at a point above the typical pressures found in the column of a transmission electron microscope (TEM) at room temperature. This makes the imaging and characterisation of any sort of nanostructured sulphur samples challenging, as the material will be modified or even disappear rapidly as soon as it is inserted into the TEM vacuum. As a result, materials characterised by such methods are prone to deviation from normal conditions to a great extent. To prevent this, a novel method of encapsulating sulphur particles between silicon nitride (SiNx) membranes is demonstrated in this work.


Sign in / Sign up

Export Citation Format

Share Document