excitation pulse
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Kai-Ting Yen ◽  
Chih-Hung Wu ◽  
Pin-Hsun Wang ◽  
Pi-Hui Tuan ◽  
Kuan-Wei Su

A Q-switched Nd:YAG laser with mode-locked modulations is utilized to explore the laser-induced air breakdown. The various modulation depths of the mode-locking within the Q-switched pulse can be utilized to investigate the threshold conditions. With the GHz high-speed detectors to accurately measure the temporal pulse shape pulse by pulse, it is verified that the air breakdown threshold is crucially determined by the peak-power density instead of the energy density from the statistic results, especially for mode-locked Q-switched lasers. The stability of the system for laser-induced breakdown can be evaluated by threshold width through fitting the statistical result. Otherwise, by measuring the temporal characteristics of the excitation pulse and the induced plasma, it is further found that the plasma radiation displays a few-nanoseconds time delay to the excitation pulse and shows a decaying tail to be 10 times longer than the plasma build-up time. Moreover, the incident laser pulse is observed to be self-scattered by the air breakdown, and a rapidly modulated scattering rate is found with a slight delay time to the excitation mode-locked subpulse modulations.


Tomography ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 466-476
Author(s):  
Tyler Blazey ◽  
Galen D Reed ◽  
Joel R Garbow ◽  
Cornelius von Morze

Although hyperpolarization (HP) greatly increases the sensitivity of 13C MR, the usefulness of HP in vivo is limited by the short lifetime of HP agents. To address this limitation, we developed an echo-planar (EPI) sequence with spectral-spatial radiofrequency (SSRF) pulses for fast and efficient metabolite-specific imaging of HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T. The spatial and spectral selectivity of each SSRF pulse was verified using simulations and phantom testing. EPI and CSI imaging of the rat abdomen were compared in the same rat after injecting HP [1-13C]pyruvate. A procedure was also developed to automatically set the SSRF excitation pulse frequencies based on real-time scanner feedback. The most significant results of this study are the demonstration that a greater spatial and temporal resolution is attainable by metabolite-specific EPI as compared with CSI, and the enhanced lifetime of the HP signal in EPI, which is attributable to the independent flip angle control between metabolites. Real-time center frequency adjustment was also highly effective for minimizing off-resonance effects. To the best of our knowledge, this is the first demonstration of metabolite-specific HP 13C EPI at 4.7 T. In conclusion, metabolite-specific EPI using SSRF pulses is an effective way to image HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T.


2021 ◽  
Vol 66 (5) ◽  
pp. 424
Author(s):  
D.V. Slobodianiuk

The excitation of ultrashort wavelength spin waves via the spin-Cherenkov effect in magnetic waveguides is investigated via a micromagnetic modeling. The proposed excitation method is relatively simple and easily tunable. The excitation efficiency of the proposed scheme is obtained for different excitation pulse velocities and widths. A coupled waveguide system is also considered. In this case, the spin waves are excited in the first waveguide and then are transferred to the second one due to the dipolar coupling between waveguides. It is also shown that the excitation and transfer of excited spin waves have some limitations related to the dipolar coupling mechanism between the waveguides.


Sign in / Sign up

Export Citation Format

Share Document