Vestibulo-ocular Reflex Suppression during High Velocity Head-free Pursuit in Normal Subjects

1991 ◽  
Vol 111 (sup481) ◽  
pp. 272-276 ◽  
Author(s):  
John A. Waterston ◽  
Graham R. Barnes
2018 ◽  
Vol 237 (2) ◽  
pp. 411-416
Author(s):  
Maxime Maheu ◽  
L. Behtani ◽  
M. Nooristani ◽  
A. Delcenserie ◽  
F. Champoux

2000 ◽  
Vol 10 (2) ◽  
pp. 75-86 ◽  
Author(s):  
Jacob J. Bloomberg ◽  
Lauren A. Merkle ◽  
Susan R. Barry ◽  
William P. Huebner ◽  
Helen S. Cohen ◽  
...  

The goal of the present study was to determine if adaptive modulation of vestibulo-ocular reflex (VOR) function is associated with commensurate alterations in manual target localization. To measure the effects of adapted VOR on manual responses we developed the Vestibular-Contingent Pointing Test (VCP). In the VCP test, subjects pointed to a remembered target following passive whole body rotation in the dark. In the first experiment, subjects performed VCP before and after wearing 0.5X minifying lenses that adaptively attenuate horizontal VOR gain. Results showed that adaptive reduction in horizontal VOR gain was accompanied by a commensurate change in VCP performance. In the second experiment, bilaterally labyrinthine deficient (LD) subjects were tested to confirm that vestibular cues were central to the spatial coding of both eye and hand movements during VCP. LD subjects performed significantly worse than normal subjects. These results demonstrate that adaptive change in VOR can lead to alterations in manual target localization.


1998 ◽  
Vol 28 (5) ◽  
pp. 413-422 ◽  
Author(s):  
G Quarck ◽  
O Etard ◽  
H Normand ◽  
M Pottier ◽  
P Denise

Author(s):  
Homa Zarrinkoob ◽  
Hadi Behzad ◽  
Seyed Mehdi Tabatabaee

Background and Aim: One of the tools for ass­essing the vestibulo-ocular reflex (VOR) is using video head impulse test (vHIT). In this test by placing the head at different angles and shaking the head, three semicircular canals of the vestibular system in each ear can be exami­ned separately. The purpose of this study was to investigate the relationship between the low and high velocities of the vHIT test with VOR and its compensatory saccades. Methods: The vHIT test was performed by an examiner in 49 normal individuals aged 23–39 at low and high velocities. All participants had normal hearing, visual, and vestibular systems. Results: Mean gains in the horizontal, anterior and posterior semicircular canals in the right ear respectively were 0.92, 1 and 0.90 and in the left ear 0.93, 0.99 and 0.95 for low velocity and 0.78, 0.92 and 0.79 in the right ear and 0.80, 0.85 and 0.86 in the left ear for high velocity. Also, the number of compensatory saccade at high velocity was higher than those at the low velocity and the latency of compensatory sacc­ade was lower at the higher velocity. Conclusion: In the vHIT test, VOR gain decreases at high velocity that is statistically significant. Also, compensatory saccades are more likely to occur at high velocity with sma­ller delay. Therefore, high-velocity vHIT test is not recommended for the purpose of examining the VOR gain and compensatory saccade.


2017 ◽  
Vol 128 (11) ◽  
pp. 2211-2216 ◽  
Author(s):  
E. Anagnostou ◽  
P. Koutsoudaki ◽  
A. Stavropoulos ◽  
I. Evdokimidis

2003 ◽  
Vol 13 (2-3) ◽  
pp. 79-91
Author(s):  
Stefano Ramat ◽  
Roberto Schmid ◽  
Daniela Zambarbieri

Passive head rotation in darkness produces vestibular nystagmus, consisting of slow and quick phases. The vestibulo-ocular reflex produces the slow phases, in the compensatory direction, while the fast phases, in the same direction as head rotation, are of saccadic origin. We have investigated how the saccadic components of the ocular motor responses evoked by active head rotation in darkness are generated, assuming the only available sensory information is that provided by the vestibular system. We recorded the eye and head movements of nine normal subjects during active head rotation in darkness. Subjects were instructed to rotate their heads in a sinusoidal-like manner and to focus their attention on producing a smooth head rotation. We found that the desired eye position signal provided to the saccadic mechanism by the vestibular system may be modeled as a linear combination of head velocity and head displacement information. Here we present a mathematical model for the generation of both the slow and quick phases of vestibular nystagmus based on our findings. Simulations of this model accurately fit experimental data recorded from subjects.


Sign in / Sign up

Export Citation Format

Share Document