Syndecan-1 Expression on Malignant Cells from the Blood and Marrow of Patients with Plasma Cell Proliferative Disorders and B-Cell Chronic Lymphocytic Leukemia

1998 ◽  
Vol 31 (1-2) ◽  
pp. 167-175 ◽  
Author(s):  
Thomas E. Witzig ◽  
Teresa Kimlinger ◽  
Mary Stenson ◽  
Terry Therneaip
1993 ◽  
Vol 177 (1) ◽  
pp. 213-218 ◽  
Author(s):  
M Buschle ◽  
D Campana ◽  
S R Carding ◽  
C Richard ◽  
A V Hoffbrand ◽  
...  

The malignant, CD5+ B lymphocytes of B cell chronic lymphocytic leukemia (B-CLL) die by apoptosis in vitro. This is in contrast to the prolonged life span of the leukemic cells in vivo and likely reflects the lack of essential growth factors in the tissue culture medium. We found that interferon gamma (IFN-gamma) inhibits programmed cell death and promotes survival of B-CLL cells in culture. This effect may also be important in vivo: increased serum levels of IFN-gamma, ranging from 60 to > 2,200 pg/ml, were found in 7 of 10 B-CLL samples tested, whereas the sera of 10 healthy individuals did not contain detectable levels of this cytokine (< 20 pg/ml). High levels of IFN-gamma message were detected in RNA from T cell-depleted B-CLL peripheral blood samples by Northern blot analysis. Synthesis of IFN-gamma by B-CLL lymphocytes was confirmed by in situ hybridization and flow cytometry. The majority of B-CLL cells (74-82%) expressed detectable levels of IFN-gamma mRNA, and CD19+ B-CLL cells were labeled with anti-IFN-gamma monoclonal antibodies. These results show that IFN-gamma inhibits programmed cell death in B-CLL cells and suggest that the malignant cells are able to synthesize this cytokine. By delaying apoptosis, IFN-gamma may extend the life span of the malignant cells and thereby contribute to their clonal accumulation.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Welbert de Oliveira Pereira ◽  
Nydia Strachman Bacal ◽  
Rodolfo Patussi Correia ◽  
Ruth Hissae Kanayama ◽  
Elvira Deolinda Veloso ◽  
...  

2006 ◽  
Vol 12 (4) ◽  
pp. 187-192
Author(s):  
F. Scamardella ◽  
M. Maconi ◽  
L. Albertazzi ◽  
B. Gamberi ◽  
L. Gugliotta ◽  
...  

Author(s):  
Alessandro Pileri ◽  
Carlotta Baraldi ◽  
Alessandro Broccoli ◽  
Roberto Maglie ◽  
Annalisa Patrizi ◽  
...  

2001 ◽  
Vol 194 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Andreas Rosenwald ◽  
Ash A. Alizadeh ◽  
George Widhopf ◽  
Richard Simon ◽  
R. Eric Davis ◽  
...  

The most common human leukemia is B cell chronic lymphocytic leukemia (CLL), a malignancy of mature B cells with a characteristic clinical presentation but a variable clinical course. The rearranged immunoglobulin (Ig) genes of CLL cells may be either germ-line in sequence or somatically mutated. Lack of Ig mutations defined a distinctly worse prognostic group of CLL patients raising the possibility that CLL comprises two distinct diseases. Using genomic-scale gene expression profiling, we show that CLL is characterized by a common gene expression “signature,” irrespective of Ig mutational status, suggesting that CLL cases share a common mechanism of transformation and/or cell of origin. Nonetheless, the expression of hundreds of other genes correlated with the Ig mutational status, including many genes that are modulated in expression during mitogenic B cell receptor signaling. These genes were used to build a CLL subtype predictor that may help in the clinical classification of patients with this disease.


Sign in / Sign up

Export Citation Format

Share Document