Programmed Cell Death
Recently Published Documents





2021 ◽  
Vol 11 ◽  
Tao Wang ◽  
Yan Huang ◽  
Xing Huang ◽  
Zheng Lv ◽  
Shuo Tian ◽  

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare autosomal dominant disorder that results from a germline mutation in the fumarate hydratase (FH) gene; it manifests as cutaneous leiomyomas, uterine fibroids, and renal cell cancer (RCC). Patients with HLRCC-associated RCC (HLRCC-RCC) have aggressive clinical courses, but there is no standardized therapy for advanced HLRCC-RCC. Here, we describe aggressive HLRCC in a 26-year-old man who presented with RCC that exhibited a novel heterozygous germline insertion mutation in exon 2 of the FH gene (c.191dupA: p.N64fs). Systemic lymph node metastasis had already occurred. The patient underwent robot-assisted laparoscopic resection of the right kidney, but new metastases appeared within 5 months postoperatively. Histological staining of the resected tumor showed high expression levels of programmed cell death-ligand 1 (PD-L1) and programmed cell death-1 (PD-1). The patient was treated with anti-PD-1 antibody as first-line therapy. After 2 years of immune checkpoint inhibitor (ICI) treatment, all lesions had disappeared; this response was maintained at 51 months. To our knowledge, this is the first successful treatment of HLRCC-RCC with single-agent immunotherapy. Our approach might be effective for patients with advanced HLRCC-RCC.

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5142
Ying-Chun Shen ◽  
Ching-Ping Yeh ◽  
Yung-Ming Jeng ◽  
Chiun Hsu ◽  
Chih-Hung Hsu ◽  

Purpose: Tumor-infiltrating tissue-resident memory CD8 T cells (CD8 TRM; CD103+ CD8+) are considered tumor-specific and may correlate better with the tumor response to immune checkpoint blockade (ICB). This study evaluated the association of tumor-infiltrating CD8 TRM and their subsets with the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC). Experimental Design: Consecutive HCC patients who received ICB in prospective trials were analyzed. Formalin-fixed paraffin-embedded tumor sections were stained for DAPI, CD8, CD103, CD39, programmed cell death-1 (PD-1), and programmed cell death ligand 1 (PD-L1) using a multiplex immunohistochemical method. The densities of CD8 T cells, CD8 TRM, and CD39+ or PD-L1+ subsets of CD8 TRM were correlated with tumor response and overall survival (OS). Results: A total of 73 patients were identified, and 48 patients with adequate pretreatment tumor specimens and complete follow-up were analyzed. A median of 32.7% (range: 0–92.6%) of tumor-infiltrating CD8 T cells were TRM. In subset analyses, 66.6% ± 34.2%, 69.8% ± 33.4%, and 0% of CD8 TRM cells coexpressed CD39, PD-L1, and PD-1, respectively. The objective response rates for CD8 T cell-high, CD8 TRM-high, CD39+ CD8 TRM-high, and PD-L1+ CD8 TRM-high groups were 41.7%, 37.5%, 37.5%, and 29.2%, respectively. Patients with CD8 T cell-high, but not those with CD8 TRM-high, CD39+ CD8 TRM-high, or PD-L1+ CD8 TRM-high, tumors, had significantly prolonged OS (p = 0.0429). Conclusions: Compared with total tumor-infiltrating CD8 T cells, tumor-infiltrating CD8 TRM or their subsets failed to provide additional advantages in predicting the efficacy of immunotherapy for HCC.

Lissete Sánchez-Magraner ◽  
Miguel de la Fuente ◽  
Charles Evans ◽  
James Miles ◽  
Ane Elexpe ◽  

Melanoma is a carcinoma known to evade the host immune defenses via the downregulation of the immune response. One of the molecules involved in this mechanism is programmed cell death ligand 1 (PD-L1), which interacts with its receptor, programmed cell death protein 1 (PD-1), expressed on T cells, leading to a reduction in cytokine release and cytotoxic activity, as well as a halt in T-cell proliferation. The approved therapeutic monoclonal antibodies, such as pembrolizumab, target the PD-1/PD-L1 interaction and are revolutionizing cancer treatments. We developed an assay that provides a quantitative readout of PD-1/PD-L1 interactive states between cell membranes of human immune cells (peripheral blood mononuclear cells, PBMCs) and PD-L1-expressing samples. For this purpose, cell membrane microarrays (CMMAs) were developed from membranes isolated from a HT144 cell line and melanoma samples, and PD-L1 expression was quantified using immunofluorescence (IF). CMMAs were incubated with cell membranes of PBMCs expressing PD-1, and the interaction with PD-L1 was quantified by time-resolved Förster resonance energy transfer, in the presence and absence of pembrolizumab as a blocking drug. The developed assay was able to quantify the PD-1/PD-L1 interaction, and this engagement was disrupted in the presence of the blocking antibody. This demonstrates the potential of the method to analyze monoclonal antibody drugs, as well as the functional states of immune checkpoint regulators. Furthermore, our findings provide evidence to support the future implementation of this methodology for both drug discovery and immune system monitoring in cancer, transplantation, and inflammatory and autoimmune diseases.

2021 ◽  
pp. 1-3
Ginevra Lolli ◽  
Beatrice Casadei ◽  
Lisa Argnani ◽  
Alessandro Pileri ◽  
Cinzia Pellegrini ◽  

Mycosis fungoides (MF) is a disease almost impossible to cure. In the context of heavily pretreated patients, the anti-programmed cell death protein 1 (anti-PD-1) pembrolizumab is a valid therapeutic option. The alteration of the PD-1-PD ligand 1 (PD-L1) axis is often present in MF, and this aspect explains the feasibility of this therapy. We report the case of a 60-year-old woman diagnosed with MF in 2003, Olsen stage IA (T1M0NXBO). Since the moment of the diagnosis, she received 10 lines of therapy, with a short duration of response after each one of them. In April 2020, our patient started pembrolizumab 2 mg/kg every 3 weeks, and she achieved a partial response after the 4th cycle, consistent with the modified severity assessment tool (mSWAT) 1, which she is still maintaining after 10 cycles. No grade ≥3 adverse events were recorded. We conclude that pembrolizumab can induce extremely rapid responses in MF, with very low toxicity.

Matias Gompertz-Mattar ◽  
Juan Perales ◽  
Aditi Sahu ◽  
Sebastián Mondaca ◽  
Sergio Gonzalez ◽  

Jingyu Xu ◽  
Shufang Cai ◽  
Jiaxin Zhao ◽  
Ke Xu ◽  
Hao Ji ◽  

Pyroptosis is a novel programmed cell death process that promotes the release of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by activating inflammasomes and gasdermin D (GSDMD), leading to cell swelling and rupture. Pyroptosis is involved in the regulation of the occurrence and development of cardiovascular and cerebrovascular diseases, tumors, and nerve injury. Diabetes is a metabolic disorder characterized by long-term hyperglycemia, insulin resistance, and chronic inflammation. The people have paid more and more attention to the relationship between pyroptosis, diabetes, and its complications, especially its important regulatory significance in diabetic neurological diseases, such as diabetic encephalopathy (DE) and diabetic peripheral neuropathy (DPN). This article will give an in-depth overview of the relationship between pyroptosis, diabetes, and its related neuropathy, and discuss the regulatory pathway and significance of pyroptosis in diabetes-associated neuropathy.

2021 ◽  
Vol 22 (20) ◽  
pp. 10924
Yan Guo ◽  
Jianhuai Liang ◽  
Boping Liu ◽  
Yulong Jin

In cancer immunotherapy, an emerging approach is to block the interactions of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) using small-molecule inhibitors. The food-derived polyphenols curcumin (CC), res (RSV) and epigallocatechin gallate (EGCG) have anticancer immunologic functions, which, recently, have been proposed to act via the downregulation of PD-L1 expression. However, it remains unclear whether they can directly target PD-L1 dimerization and, thus, interrupt the PD-1/PD-L1 pathway. To elucidate the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and nanosecond molecular dynamics simulations were performed. Binding free energy calculations show that the affinities of CC, RSV and EGCG to the PD-L1 dimer follow a trend of CC > RSV > EGCG. Hence, CC is the most effective inhibitor of the PD-1/PD-L1 pathway. Analysis on contact numbers, nonbonded interactions and residue energy decomposition indicate that such compounds mainly interact with the C-, F- and G-sheet fragments of the PD-L1 dimer, which are involved in interactions with PD-1. More importantly, nonpolar interactions between these compounds and the key residues Ile54, Tyr56, Met115, Ala121 and Tyr123 play a dominant role in binding. Free energy landscape and secondary structure analyses further demonstrate that such compounds can stably interact with the binding domain of the PD-L1 dimer. The results provide evidence that CC, RSV and EGCG can inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. This provides a novel approach to discovering food-derived small-molecule inhibitors of the PD-1/PD-L1 pathway with potential applications in cancer immunotherapy.

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2706
Yasuhiro Fuseya ◽  
Kazuhiro Iwai

The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.

2021 ◽  
Vol 11 ◽  
Lingling Li ◽  
Chenghui Pi ◽  
Xin Yan ◽  
Jiangyue Lu ◽  
Xuhui Yang ◽  

BackgroundLung immune prognostic index (LIPI) refers to a biomarker combining derived neutrophil-to-lymphocyte ratio (dNLR) and lactate dehydrogenase (LDH). Its prognostic effect on advanced small cell lung cancer (SCLC) patients receiving programmed cell death 1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors plus chemotherapy as first-line treatment remains unclear. Our research investigated the relationship between pretreatment LIPI and the prognosis of patients receiving first-line PD-1/PD-L1 inhibitors plus chemotherapy.MethodsAdvanced SCLC patients receiving PD-1/PD-L1 inhibitors plus chemotherapy as first-line treatment from Jan 2015 to Oct 2020 were included. Based on the values of dNLR and LDH, the study population was divided into two groups: LIPI good and LIPI intermediate/poor. The Kaplan-Meier method was used to compute the median survival time and the log-rank test was used to compare the two groups. Univariate and multivariate analyses were used to examine the correlation between the pretreatment LIPI and clinical outcomes.ResultsOne hundred patients were included in this study, of which, 64% were LIPI good (dNLR < 4.0 and LDH < 283 U/L), 11% were LIPI poor (dNLR ≥ 4.0 and LDH ≥ 283 U/L), and the remaining 25% were LIPI intermediate. The LIPI good group had better progression-free survival (PFS) (median: 8.4 vs 4.7 months, p = 0.02) and overall survival (OS) (median: 23.8 vs 13.3 months, p = 0.0006) than the LIPI intermediate/poor group. Multivariate analysis showed that pretreatment LIPI intermediate/poor was an independent risk factor for OS (HR: 2.34; 95%CI, 1.13, 4.86; p = 0.02). Subgroup analysis showed that pretreatment LIPI good was associated with better PFS and OS in males, extensive disease (ED), PD-1 inhibitor treatment, smokers, and liver metastasis (p < 0.05).ConclusionsPretreatment LIPI could serve as a prognostic biomarker for advanced SCLC patients receiving first-line PD-1/PD-L1 inhibitors plus chemotherapy.

Claudia Compagnucci ◽  
Kira Martinus ◽  
John Griffin ◽  
Michael J. Depew

Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.

Sign in / Sign up

Export Citation Format

Share Document