Effects of vegetation cover on soil heat flux in the southern Yukon Territory

Erdkunde ◽  
1998 ◽  
Vol 52 (4) ◽  
pp. 265-285 ◽  
Author(s):  
Stuart A. Harris
2003 ◽  
Vol 2 (4) ◽  
pp. 589
Author(s):  
Douglas R. Cobos ◽  
John M. Baker

2008 ◽  
Vol 5 (2) ◽  
pp. 421-431 ◽  
Author(s):  
A. Hammerle ◽  
A. Haslwanter ◽  
U. Tappeiner ◽  
A. Cernusca ◽  
G. Wohlfahrt

Abstract. Using a six year data set of eddy covariance flux measurements of sensible and latent heat, soil heat flux, net radiation, above-ground phytomass and meteorological driving forces energy partitioning was investigated at a temperate mountain grassland managed as a hay meadow in the Stubai Valley (Austria). The main findings of the study were: (i) Energy partitioning was dominated by latent heat, followed by sensible heat and the soil heat flux; (ii) When compared to standard environmental forcings, the amount of green plant matter, which due to three cuts varied considerably during the vegetation period, explained similar, and partially larger, fractions of the variability in energy partitioning; (iii) There were little, if any, indications of water stress effects on energy partitioning, despite reductions in soil water availability in combination with high evaporative demand, e.g. during the summer drought of 2003.


Author(s):  
M. O. Osinowo ◽  
A. A. Willoughby ◽  
T . Ewetumo ◽  
L. B. Kolawole

Author(s):  
A. Usman ◽  
B. B. Ibrahim ◽  
L. A. Sunmonu

Characteristic variation of ground heat flux and net radiation enhances the understanding of the significance of indicated trends of variability to everyday life and factors that might be responsible for such variations. This research work critically analyses some specific days with field data over grass-covered surface at Ile-Ife, Nigeria between ground heat flux and net radiation. For the field observations, an instrumented meteorological mast was set up at an experimental site (7°33’N, 4°35’E) located at Obafemi Awolowo University campus, Ile-Ife, Nigeria for a period of two weeks (31st May-14th June, 2013). The soil heat flux, net radiation and soil temperature from the soil heat flux plate; an all-wave net radiometer, and soil thermometer were recorded every 10 seconds and averaged over 2 minutes interval. The sampled data was stored in the data logger (Campbell Scientific, Model CR10X) storage module. After the removal of spurious measurement values (Quality Assurance and Quality Control), the data stored was further reduced to 30 minutes averages using the Microcal Origin (version 7.0) data analysis software. The results showed that the measured ground heat flux, HGM during the daytime increases until 1400 hrs with maximum value of about 136.86 Wm-2 and minimum value of about -72.87 Wm-2 at 0830 hrs (DOY 156). The measured net radiation, Rn value of 649.65 Wm-2 observed at 1400 hrs (DOY 156), represented the maximum value for the entire period of the study. -10.75 Wm-2 value observed at1800 hrs (DOY 154), represented the minimum value for the entire period of the study due to the cloudy condition of the sky which reduces the amount of incoming solar radiation reaching the earth surface.


Sign in / Sign up

Export Citation Format

Share Document