summer drought
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 239)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 505 ◽  
pp. 119898
Author(s):  
Chazi Tong ◽  
Xin Zhang ◽  
Jiangbo Xie ◽  
Tingting Mei ◽  
Dongming Fang ◽  
...  
Keyword(s):  

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12777
Author(s):  
Svenja Meyer ◽  
Dominika Kundel ◽  
Klaus Birkhofer ◽  
Andreas Fliessbach ◽  
Stefan Scheu

Higher frequencies of summer droughts are predicted to change soil conditions in the future affecting soil fauna communities and their biotic interactions. In agroecosystems drought effects on soil biota may be modulated by different management practices that alter the availability of different food resources. Recent studies on the effect of drought on soil microarthropods focused on measures of abundance and diversity. We here additionally investigated shifts in trophic niches of Collembola and Oribatida as indicated by stable isotope analysis (13C and 15N). We simulated short-term summer drought by excluding 65% of the ambient precipitation in conventionally and organically managed winter wheat fields on the DOK trial in Switzerland. Stable isotope values suggest that plant litter and root exudates were the most important resources for Collembola (Isotoma caerulea, Isotomurus maculatus and Orchesella villosa) and older plant material and microorganisms for Oribatida (Scheloribates laevigatus and Tectocepheus sarekensis). Drought treatment and farming systems did not affect abundances of the studied species. However, isotope values of some species increased in organically managed fields indicating a higher proportion of microorganisms in their diet. Trophic niche size, a measure of both isotope values combined, decreased with drought and under organic farming in some species presumably due to favored use of plants as basal resource instead of algae and microorganisms. Overall, our results suggest that the flexible usage of resources may buffer effects of drought and management practices on the abundance of microarthropods in agricultural systems.


2022 ◽  
Vol 3 ◽  
Author(s):  
Jiancong Chen ◽  
Baptiste Dafflon ◽  
Haruko M. Wainwright ◽  
Anh Phuong Tran ◽  
Susan S. Hubbard

Evapotranspiration (ET) is strongly influenced by gradual climate change and fluctuations in meteorological conditions, such as earlier snowmelt and occurrence of droughts. While numerous studies have investigated how climate change influences the inter-annual variability of ET, very few studies focused on quantifying how subseasonal events control the intra-variability of ET. In this study, we developed the concept of subseasonal regimes, whose timing and duration are determined statistically using Hidden Markov Models (HMM) based on meteorological conditions. We tested the value of subseasonal regimes for quantitatively characterizing the variability of seasonal and subseasonal events, including the onset of snow accumulation, snowmelt, growing season, monsoon, and defoliation. We examined how ET varied as a function of the timing of these events within a year and across six watersheds in the region. Variability of annual ET across these six sites is much less significant than the variability in hydroclimate attributes at the sites. Subseasonal ET, defined as the total ET during a given subseasonal regime, provides a measure of intra-annual variability of ET. Our study suggests that snowmelt and monsoon timing influence regime transitions and duration, such as earlier snowmelt can increase springtime ET rapidly but can trigger long-lasting fore-summer drought conditions that lead to decrease subseasonal ET. Overall, our approach provides an enhanced statistically based framework for quantifying how the timing of subseasonal-event transitions influence ET variability. The improved understanding of subseasonal ET variability is important for predicting the future impact of climate change on water resources from the Upper Colorado River Basin regions.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Jiachuan Wang ◽  
Shuheng Li ◽  
Yili Guo ◽  
Qi Yang ◽  
Rui Ren ◽  
...  

Larix principis-rupprechtii is an important afforestation tree species in the North China alpine coniferous forest belt. Studying the correlations and response relationships between Larix principis-rupprechtii radial growth and climatic factors at different elevations is helpful for understanding the growth trends of L. principis-rupprechtiind its long-term sensitivity and adaptability to climate change. Pearson correlation, redundancy (RDA), and sliding analysis were performed to study the correlations and dynamic relationships between radial growth and climatic factors. The main conclusions are as follows: (1) The three-elevation standard chronologies all exhibited high characteristic values, contained rich climate information and were suitable for tree-ring climatological analyses. (2) Both temperature and precipitation restricted low-elevation L. principis-rupprechtii radial growth, while monthly maximum temperatures mainly affected mid-high-elevation L. principis-rupprechtii radial growth. (3) Mid-elevation L. principis-rupprechtii radial growth responded to climate factors with a “lag effect” and was not restricted by spring and early summer drought. (4) Long-term sliding analysis showed that spring temperatures and winter precipitation were the main climatic factors restricting L. principis-rupprechtii growth under warming and drying climate trends at different elevations. The tree-ring width index and Palmer drought severity index (PDSI) were positively correlated, indicating that L. principis-rupprechtii growth is somewhat restricted by drought. These results provide a reference and guidance for L. principis-rupprechtii management and sustainable development in different regions under warming and drying background climate trends.


2022 ◽  
Vol 26 (1) ◽  
pp. 91-116
Author(s):  
Andreas Riedl ◽  
Yafei Li ◽  
Jon Eugster ◽  
Nina Buchmann ◽  
Werner Eugster

Abstract. Non-rainfall water (NRW), defined here as dew, hoar frost, fog, rime, and water vapour adsorption, might be a relevant water source for ecosystems, especially during summer drought periods. These water inputs are often not considered in ecohydrological studies, because water amounts of NRW events are rather small and therefore difficult to measure. Here we present a novel micro-lysimeter (ML) system and its application which allows us to quantify very small water inputs from NRW during rain-free periods with an unprecedented high accuracy of ±0.25 g, which corresponds to ±0.005 mm water input. This is possible with an improved ML design paired with individual ML calibrations in combination with high-frequency measurements at 3.3 Hz and an efficient low-pass filtering to reduce noise level. With a set of ancillary sensors, the ML system furthermore allows differentiation between different types of NRW inputs, i.e. dew, hoar frost, fog, rime, and the combinations among these, but also additional events when condensation on leaves is less probable, such as water vapour adsorption events. In addition, our ML system design allows one to minimize deviations from natural conditions in terms of canopy and soil temperatures, plant growth, and soil moisture. This is found to be a crucial aspect for obtaining realistic NRW measurements in short-statured grasslands. Soil temperatures were higher in the ML compared to the control, and thus further studies should focus on improving the thermal soil regime of ML. Our ML system has proven to be useful for high-accuracy, long-term measurements of NRW on short-statured vegetation-like grasslands. Measurements with the ML system at a field site in Switzerland showed that NRW input occurred frequently, with 127 events over 12 months with a total NRW input of 15.9 mm. Drainage-water flow of the ML was not measured, and therefore the NRW inputs might be conservative estimates. High average monthly NRW inputs were measured during summer months, suggesting a high ecohydrological relevance of NRW inputs for temperate grasslands.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohamed Ait Bihi ◽  
Fatima Ain-Lhout ◽  
Abdelhakim Hatimi ◽  
Fadma Fahmi ◽  
Saida Tahrouch

In this paper, we investigated the seasonal physiological performance and morphological adjustment of Argania spinosa growing under contrasting climatic and biogeographic conditions.Two marginal populations were selected in the main distribution area of the species, one at the Northwest and the other one at the South-west. Trees from the North showed a Mediterranean pattern in Photosynthetic performances, exhibiting maximal carbon assimilation during spring and minimum in summer. In contrast, trees from the South showed a different pattern with maximum values recorded in winter and minimum in spring. Photochemical efficiency of PSII results evidenced the absence of damage to PSII in both sites, probably due to an efficient energy dissipation processed by carotenoid pigments. We recorded increased LMA values in the South, which improves drought resistance. Increasing stomatal length and decreasing stomatal density were registered during the drought season in both populations. A. Spinosa is sensitive to changes in the length of drought stress at its Southern limit. The scarcity of rainfall leading to persistent drought has limited the distribution of the species to the banks of dry Wadis and depressions, where it finds some water compensations during summer. In the North, the summer drought severely impacted the species carbon assimilation.


2022 ◽  
Author(s):  
Abayomi A. Abatan ◽  
Simon F. B. Tett ◽  
Buwen Dong ◽  
Christopher Cunningham ◽  
Conrado M. Rudorff ◽  
...  

AbstractThe State of São Paulo, Brazil (SSP) was impacted by severe water shortages during the intense austral summer drought of 2013/2014 and 2014/2015 (1415SD). This study seeks to understand the features and physical processes associated with these summer droughts in the context of other droughts over the region during 1961–2010. Thus, this study examines the spatio-temporal characteristics of anomalously low precipitation over SSP and the associated large-scale dynamics at seasonal timescales, using an observation-based dataset from the Climatic Research Unit (CRU) and model simulation outputs from the Met Office Hadley Centre Global Environment Model (HadGEM3-GA6 at N216 resolution). The study analyzes Historical and Natural simulations from the model to examine the role of human-induced climate forcing on droughts over SSP. Composites of large-scale fields associated with droughts are derived from ERA-20C and ERA-Interim reanalysis and the model simulations. HadGEM3-GA6 simulations capture the observed interannual variability of normalized precipitation anomalies over SSP, but with biases. Drought events over SSP are related to subsidence over the region. This is associated with reduced atmospheric moisture over the region as indicated by the analysis of the vertically integrated moisture flux convergence, which is dominated by reduced moisture flux convergence. The Historical simulations simulate the subsidence associated with droughts, but there are magnitude and location biases. The similarities between the circulation features of the severe 1415SD and other drought events over the region show that understanding of the dynamics of the past drought events over SSP could guide assessment of changes in risk of future droughts and improvements of model performance. The study highlights the merits and limitations of the HadGEM3-GA6 simulations. The model possesses the skills in simulating the large-scale atmospheric circulations modulating precipitation variability, leading to drought conditions over SSP.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Jorge A. Amador ◽  
Dayanna Arce-Fernández

Lightning activity has been recognized to have, historically, social and environmental consequences around the globe. This work analyzes the space-time distribution of lightning-densities (D) in an extended Central America region (ECA). World Wide Lightning Location Network data was analyzed to link D with dominant climate patterns over the ECA for 2012–2020. D associated with cold surges entering the tropics dominate during boreal winter. The highest D (hot-spots) was found to agree well with previously known sites, such as the “Catatumbo” in Venezuela; however, D was lower here due to different detection efficiencies. Previously reported hot-spots showed strong continental signals in CA; however, in this work, they were over the oceans near to coastlines, especially in the eastern tropical Pacific (ETP). Most cold-spots, implying a minimum of vulnerability to human impacts and to some industries, were situated in the Caribbean Sea side of Central America. The Mid-Summer-Drought and the Caribbean-Low-Level-Jet (CLLJ) markedly reduced the D during July-August. The CLLJ in the central CS and across the Yucatan and the southern Gulf of Mexico acts as a lid inhibiting convection due to its strong vertical shear during the boreal summer. The CLLJ vertical wind-shear and its extension to the Gulf of Papagayo also diminished convection and considerably decreased the D over a region extending westward into the ETP for at least 400–450 km. A simple physical mechanism to account for the coupling between the CLLJ, the MSD, and lightning activity is proposed for the latter region.


2021 ◽  
Author(s):  
Tejshree Tiwari ◽  
Ryan Sponseller ◽  
Hjalmar Laudon

Abstract One likely consequence of global climate change is an increased frequency and intensity of droughts at high latitudes. We use a 17-year record from 13 nested boreal streams to examine the direct and lagged effects of summer drought on the quantity and quality of dissolved organic carbon (DOC) inputs from catchment soils. Protracted periods of drought reduced DOC concentrations in all catchments but also led to large pulses of DOC inputs upon rewetting in autumn. Concurrent changes in DOC optical properties and chemical character suggest that seasonal drying and rewetting triggers soil processes that alter the forms of carbon supplied to streams. Contrary to common belief, the clearest drought effects were observed in larger watersheds, whereas responses were most muted in smaller catchments. Collectively, our results reveal an emerging shift in the seasonal distribution of DOC concentrations and character, with potentially far-reaching consequences for northern aquatic ecosystems.


MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 251-258
Author(s):  
G. S. L. H. V. PRASADA RAO

Monsoon rainfall across the State of Kerala was declining since last 60 years (cyclic trend of 40-60 years is also noticed with annual/monsoon rainfall) while rise in temperature is evident. Of course, rate of increase in temperature was alarming across the High ranges (where cardamom, coffee and tea are grown) due to deforestation. It is also true to some extent along the Coast (low land) due to increase in sea surface air temperature. The decade 1981-90 was the driest and warmest decade. The year 1987 was the warmest year across Kerala. The State as a whole was moving from wetness to dryness within the Humid Climate ((B4-B3 as per the Thornthwaite’s climate classification). Among weather extremes, summer drought, monsoon flood, strong wind (blows in Palghat Gap from November to February, other than cyclonic wind across the State), hailstorms, unusual rains, landslides and warming may adversely affect plantation crops’ production and its quality. Heat wave and cold waves are not relevant with reference to plantation crops under the Humid Tropics. The effect of summer drought on coconut yield was noticed in 1983, 2004 and 2013. In the case of coffee, it appears that crop matures early in recent years due to increase in temperature and climate change. The quality of coffee and black pepper, nut size in coconut and cashew are also influenced due to global warming and climate change. In the case of black pepper, the mortality rate is high in young pepper vines due to prolonged summer drought as noticed in summer 1983, 2004 and 2013. Mixed cropping/integrated farming is suggested to sustain crop income against adverse weather on long run under projected climate change scenario.


Sign in / Sign up

Export Citation Format

Share Document