scholarly journals Resource Allocation in Cloud Computing using Heuristic Load Balancing Algorithm

2020 ◽  
Author(s):  
Anup Shrestha ◽  
Suriayati Chuprat ◽  
Nandini Mukherjee

Cloud computing is becoming more popular, unlike conventional computing, due to its added advantages. This is because it offers utility-based services to its subscribers upon their demand. Furthermore, this computing environment provides IT services to its users where they pay for every use. However, the increasing number of tasks requires virtual machines for them to be accomplished quickly. Load balancing a critical concern in cloud computing due to the massive increase in users' numbers. This paper proposes the best heuristic load balancing algorithm that will schedule a strategy for resource allocation that will minimize make span (completion time) in any technology that involves use cloud computing. The proposed algorithm performs better than other load balancing algorithms.

2020 ◽  
Author(s):  
Anup Shrestha ◽  
Suriayati Chuprat ◽  
Nandini Mukherjee

<div> <div> <div> <p>Cloud computing is becoming more popular, unlike conventional computing, due to its added advantages. This is because it offers utility-based services to its subscribers upon their demand. Furthermore, this computing environment provides IT services to its users where they pay for every use. However, the increasing number of tasks requires virtual machines for them to be accomplished quickly. Load balancing a critical concern in cloud computing due to the massive increase in users' numbers. This paper proposes the best heuristic load balancing algorithm that will schedule a strategy for resource allocation that will minimize make span (completion time) in any technology that involves use cloud computing. The proposed algorithm performs better than other load balancing algorithms.</p> </div> </div> </div>


2020 ◽  
Author(s):  
Anup Shrestha ◽  
Suriayati Chuprat ◽  
Nandini Mukherjee

<div> <div> <div> <p>Cloud computing is becoming more popular, unlike conventional computing, due to its added advantages. This is because it offers utility-based services to its subscribers upon their demand. Furthermore, this computing environment provides IT services to its users where they pay for every use. However, the increasing number of tasks requires virtual machines for them to be accomplished quickly. Load balancing a critical concern in cloud computing due to the massive increase in users' numbers. This paper proposes the best heuristic load balancing algorithm that will schedule a strategy for resource allocation that will minimize make span (completion time) in any technology that involves use cloud computing. The proposed algorithm performs better than other load balancing algorithms.</p> </div> </div> </div>


Author(s):  
Saumendu Roy ◽  
Dr. Md. Alam Hossain ◽  
Sujit Kumar Sen ◽  
Nazmul Hossain ◽  
Md. Rashid Al Asif

Load balancing is an integrated aspect of the environment in cloud computing. Cloud computing has lately outgoing technology. It has getting exoteric day by day residence widespread chance in close to posterior. Cloud computing is defined as a massively distributed computing example that is moved by an economic scale in which a repertory of abstracted virtualized energetically. The number of clients in cloud computing is increasing exponentially. The huge amount of user requests attempt to entitle the collection for numerous applications. Which alongside with heavy load not far afield off from cloud server. Whenever particular (Virtual Machine) VMs are overloaded then there are no more duties should be addressed to overloaded VM if under loaded VMs are receivable. For optimizing accomplishment and better response or reaction time the load has to be balanced between overloaded VMs (virtual machines). This Paper describes briefly about the load balancing accession and identifies which is better than others (load balancing algorithm).


2018 ◽  
Vol 17 (2) ◽  
pp. 7261-7272 ◽  
Author(s):  
Ishaan Chawla

Cloud computing is a vigorous technology by which a user can get software, application, operating system and hardware as a service without actually possessing it and paying only according to the usage. Cloud Computing is a hot topic of research for the researchers these days. With the rapid growth of Internet technology cloud computing have become main source of computing for small as well big IT companies. In the cloud computing milieu the cloud data centers and the users of the cloud-computing are globally situated, therefore it is a big challenge for cloud data centers to efficiently handle the requests which are coming from millions of users and service them in an efficient manner.Cloud computing is Internet based development and use of computer technology. It is a style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet. Users need not have knowledge of, expertise in, or control over the technology infrastructure "in the cloud" that supports them. Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous computing systems. On cloud computing platform, load balancing of the entire system can be  dynamically handled  by  using  virtualization  technology through which it  becomes  possible  to  remap  virtual  machine  and physical resources  according  to  the  change  in  load. However, in order to improve performance, the virtual machines have to fully utilize its resources and services by adapting to computing environment dynamically.  The  load balancing  with  proper  allocation  of  resources  must  be guaranteed  in  order  to  improve  resource  utility.  Load balancing is a critical aspect that ensures that all the resources and entities are well balanced such that no resource or entity neither is under loaded nor overloaded. The load balancing algorithms can be static or dynamic.  Load balancing in this environment means equal distribution of workload across all the nodes. Load balancing provides a way of achieving the proper utilization of resources and better user satisfaction. Hence, use of an appropriate load balancing algorithm is necessary for selecting the virtual machines or servers. This paper focuses on the load balancing algorithm which distributes the incoming jobs among VMs optimally in cloud data centers. In this paper, we have reviewed several existing load balancing mechanisms and we have tried to address the problems associated with them.


Cloud computing is a research trend which bring various cloud services to the users. Cloud environment face various challenges and issues to provide efficient services. In this paper, a novel Genetic Algorithm based load balancing algorithm has been implemented to balance the load in the network. The literature review has been studied to understand the research gap. More specifically, load balancing technique authenticate the network by enabling Virtual Machines (VM). The proposed technique has been further evaluated using the Schedule Length Runtime (SLR) and Energy consumption (EC) parameters. Overall, the effective results has been obtained such as 46% improvement in consuming the energy and 12 % accuracy for the SLR measurement. In addition, results has been compared with the conventional approaches to validate the outcomes.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Endang Wahyu Pamungkas ◽  
Divi Galih Prasetyo Putri

Recently cloud computing technology has been implemented by many companies. This technology requires a really high reliability that closely related to hardware specification and management resource quality used. Adequate hardware would make resource allocation easier. On the other hand, resource allocation will be harder if the resources are limited. This is a common condition in a developing cloud service provider. In this paper, a load balancing algorithm to allocate resources in cloud computing environment that has limited resources has been proposed. This algorithm is developed by taking the advantages of the existing algorithms, Equally Spread Current Execution and Throttled. We merge those algorithm without losing the advantages and we try to eliminate the shortcoming of each algorithm. The result shows that this algorithm is able to give a significant improvement in the limited resources environment. In addition, the algorithm also able to compete with the other algorithm in the more adequate resource environment. Based on the consistent results, this algorithm is expected to be more adaptive in different resources environment.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahfooz Alam ◽  
Mahak ◽  
Raza Abbas Haidri ◽  
Dileep Kumar Yadav

Purpose Cloud users can access services at anytime from anywhere in the world. On average, Google now processes more than 40,000 searches every second, which is approximately 3.5 billion searches per day. The diverse and vast amounts of data are generated with the development of next-generation information technologies such as cryptocurrency, internet of things and big data. To execute such applications, it is needed to design an efficient scheduling algorithm that considers the quality of service parameters like utilization, makespan and response time. Therefore, this paper aims to propose a novel Efficient Static Task Allocation (ESTA) algorithm, which optimizes average utilization. Design/methodology/approach Cloud computing provides resources such as virtual machine, network, storage, etc. over the internet. Cloud computing follows the pay-per-use billing model. To achieve efficient task allocation, scheduling algorithm problems should be interacted and tackled through efficient task distribution on the resources. The methodology of ESTA algorithm is based on minimum completion time approach. ESTA intelligently maps the batch of independent tasks (cloudlets) on heterogeneous virtual machines and optimizes their utilization in infrastructure as a service cloud computing. Findings To evaluate the performance of ESTA, the simulation study is compared with Min-Min, load balancing strategy with migration cost, Longest job in the fastest resource-shortest job in the fastest resource, sufferage, minimum completion time (MCT), minimum execution time and opportunistic load balancing on account of makespan, utilization and response time. Originality/value The simulation result reveals that the ESTA algorithm consistently superior performs under varying of batch independent of cloudlets and the number of virtual machines’ test conditions.


2020 ◽  
Vol 17 (6) ◽  
pp. 2430-2434
Author(s):  
R. S. Rajput ◽  
Dinesh Goyal ◽  
Rashid Hussain ◽  
Pratham Singh

The cloud computing environment is accomplishing cloud workload by distributing between several nodes or shift to the higher resource so that no computing resource will be overloaded. However, several techniques are used for the management of computing workload in the cloud environment, but still, it is an exciting domain of investigation and research. Control of the workload and scaling of cloud resources are some essential aspects of the cloud computing environment. A well-organized load balancing plan ensures adequate resource utilization. The auto-scaling is a technique to include or terminate additional computing resources based on the scaling policies without involving humans efforts. In the present paper, we developed a method for optimal use of cloud resources by the implementation of a modified auto-scaling feature. We also incorporated an auto-scaling controller for the optimal use of cloud resources.


2015 ◽  
Vol 15 (4) ◽  
pp. 138-148 ◽  
Author(s):  
B. Mallikarjuna ◽  
P. Venkata Krishna

Abstract Load balancing is treated as one of the important mechanisms for efficient resource allocation in cloud computing. In future there will appear a necessity of fully autonomic distributed systems to address the load balancing issues. With reference to this, we proposed a load balancing mechanism called Osmosis Load Balancing (OLB). OLB works on the principle of osmosis to reschedule the tasks in virtual machines. The solution is based on the Distributed Hash Table (DHT) with a chord overlay mechanism. The Chord overlay is used for managing bio inspired agents and status of the cloud. By simulation analysis, the proposed algorithm has shown better performance in different scenarios, both in heterogeneous and homogeneous clouds.


Sign in / Sign up

Export Citation Format

Share Document