scholarly journals The correspondence principle in quantum field theory and quantum gravity

Author(s):  
Damiano Anselmi

We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances.

Author(s):  
Damiano Anselmi

We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances.


Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Sign in / Sign up

Export Citation Format

Share Document