transition amplitude
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Omar Rodríguez-Tzompantzi

In this work, we carry out a study of the conserved quantities and dynamical structure of the four-dimensional modified axion electrodynamics theory described by the axion-photon coupling. In the first part of the analysis, we employ the covariant phase space method to construct the conserved currents and to derive the Noether charges associated with the gauge symmetry of the theory. We further derive the improved energy–momentum tensor using the Belinfante–Rosenfeld procedure, which leads us to the expressions for the energy, momentum, and energy flux densities. Thereafter, with the help of Faddeev–Jackiw’s Hamiltonian reduction formalism, we obtain the relevant fundamental brackets structure for the dynamic variables and the functional measure for determining the quantum transition amplitude. We also confirm that modified axion electrodynamics has three physical degrees of freedom per space point. Moreover, using this symplectic framework, we yield the gauge transformations and the structure of the constraints directly from the zero-modes of the corresponding pre-symplectic matrix.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 423
Author(s):  
Dibya Chakraborty ◽  
Cesar Damian ◽  
Alberto González Bernal ◽  
Oscar Loaiza-Brito

We present a proposal to relate the de Sitter conjecture (dSC) with the time dependence of fluxes via the covariant entropy bound (CEB). By assuming an early phase of accelerated expansion where the CEB is satisfied, we take into account a contribution from time-dependent flux compactification to the four-dimensional entropy which establishes a bound on the usual slow-roll parameters ηH and ϵH. We also show an explicit calculation of entropy from a toroidal flux compactification, from a transition amplitude of time-dependent fluxes which allows us to determine the conditions on which the bounds on the slow-roll parameters are in agreement to the dSC.


Author(s):  
Jing-Shu Sun ◽  
Teng Zhu ◽  
Marcin Wozniak

AbstractCurrent IoT communication node spacing selection process show may potential areas for improvements such as high delay ratio, high total energy consumption ratio, confusion of the optimal communication information band, intelligent spacing node design under the constraints of the energy-saving selection of IoT communication. Based on energy-saving constraints, the link status between nodes is evaluated through link stability and link quality. In order to prevent the generation of serious noisy nodes and frequency hopping data, the interference nodes under the intrusion of the Internet of Things are identified by determining transition amplitude of the noise nodes in the transmission data sequence. Finally, according to the calculation results of the optimal communication node selection, the design of the intelligent spacing selection model for the communication nodes of the Internet of Things is realized. The simulation results show that the established model not only reduces energy consumption of nodes, shortens the average transmission delay of nodes, but also improves anti-interference effect of node spacing selection.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 241
Author(s):  
Pei-Ming Ho ◽  
Yuki Yokokura

For an effective field theory in the background of an evaporating black hole with spherical symmetry, we consider non-renormalizable interactions and their relevance to physical effects. The background geometry is determined by the semi-classical Einstein equation for an uneventful horizon where the vacuum energy–momentum tensor is small for freely falling observers. Surprisingly, after Hawking radiation appears, the transition amplitude from the Unruh vacuum to certain multi-particle states grows exponentially with time for a class of higher-derivative operators after the collapsing matter enters the near-horizon region, despite the absence of large curvature invariants. Within the scrambling time, the uneventful horizon transitions towards a firewall, and eventually the effective field theory breaks down.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 495
Author(s):  
Yuan Su ◽  
Hsin-Yuan Huang ◽  
Earl T. Campbell

We consider simulating quantum systems on digital quantum computers. We show that the performance of quantum simulation can be improved by simultaneously exploiting commutativity of the target Hamiltonian, sparsity of interactions, and prior knowledge of the initial state. We achieve this using Trotterization for a class of interacting electrons that encompasses various physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard model. We estimate the simulation error by taking the transition amplitude of nested commutators of the Hamiltonian terms within the η-electron manifold. We develop multiple techniques for bounding the transition amplitude and expectation of general fermionic operators, which may be of independent interest. We show that it suffices to use (n5/3η2/3+n4/3η2/3)no(1) gates to simulate electronic structure in the plane-wave basis with n spin orbitals and η electrons, improving the best previous result in second quantization up to a negligible factor while outperforming the first-quantized simulation when n=η2−o(1). We also obtain an improvement for simulating the Fermi-Hubbard model. We construct concrete examples for which our bounds are almost saturated, giving a nearly tight Trotterization of interacting electrons.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Massimo Porrati ◽  
Cedric Yu

Abstract We use radial quantization to compute Chern-Simons partition functions on handlebodies of arbitrary genus. The partition function is given by a particular transition amplitude between two states which are defined on the Riemann surfaces that define the (singular) foliation of the handlebody. The final state is a coherent state while on the initial state the holonomy operator has zero eigenvalue. The latter choice encodes the constraint that the gauge fields must be regular everywhere inside the handlebody. By requiring that the only singularities of the gauge field inside the handlebody must be compatible with Wilson loop insertions, we find that the Wilson loop shifts the holonomy of the initial state. Together with an appropriate choice of normalization, this procedure selects a unique state in the Hilbert space obtained from a Kähler quantization of the theory on the constant-radius Riemann surfaces. Radial quantization allows us to find the partition functions of Abelian Chern-Simons theories for handlebodies of arbitrary genus. For non-Abelian compact gauge groups, we show that our method reproduces the known partition function at genus one.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gaurav Narain

Abstract Recently there has been a surge of interest in studying Lorentzian quant urn cosmology using Picard-Lefschetz methods. The present paper aims to explore the Lorentzian path-integral of Gauss-Bonnet gravity in four spacetime dimensions with metric as the field variable. We employ mini-superspace approximation and study the variational problem exploring different boundary conditions. It is seen that for mixed boundary conditions non-trivial effects arise from Gauss-Bonnet sector of gravity leading to additional saddle points for lapse in some case. As an application of this we consider the No-boundary proposal of the Universe with two different settings of boundary conditions) and compute the transition amplitude using Picard-Lefschetz formalism. In first case the transition amplitude is a superposition of a Lorentzian and a Euclidean geometrical configuration leading to interference incorporating non-perturbative effects coming from Gauss-Bonnet sector of gravity. In the second case involving complex initial momentum we note that the transition amplitude is an analogue of Hartle-Hawking wave-function with non-perturbative correction coming from Gauss-Bonnet sector of gravity.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Vitaly Vanchurin

AbstractWe develop a non-perturbative method for calculating partition functions of strongly coupled quantum mechanical systems with interactions between subsystems described by a path integral of a dual system. The dual path integral is derived starting from non-interacting subsystems at zeroth order and then by introducing couplings of increasing complexity at each order of an iterative procedure. These orders of interactions play the role of a dual time and the full quantum partition function is expressed as a transition amplitude in the dual system. More precisely, it is expressed as a path integral from a deformation-operators dependent initial state at zero time/order to the inverse-temperature dependent final state at later time/order. We provide examples of strongly coupled systems with up to first-order interactions (e.g. Ising model) and arbitrary high-order interactions (e.g. $$1+1\hbox {D}$$ 1 + 1 D QFT). We also discuss a possible emergence of space-time, quantum field theories and general relativity in context of the dual path integral.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 585
Author(s):  
Il-Ho Ahn ◽  
Deuk Young Kim ◽  
Sejoon Lee

The peculiar correlationship between the optical localization-state and the electrical deep-level defect-state was observed in the In0.52Al0.48As/In0.53Ga0.47As quantum well structure that comprises two quantum-confined electron-states and two hole-subbands. The sample clearly exhibited the Fermi edge singularity (FES) peak in its photoluminescence spectrum at 10–300 K; and the FES peak was analyzed in terms of the phenomenological line shape model with key physical parameters such as the Fermi energy, the hole localization energy, and the band-to-band transition amplitude. Through the comprehensive studies on both the theoretical calculation and the experimental evaluation of the energy band profile, we found out that the localized state, which is separated above by ~0.07 eV from the first excited hole-subband, corresponds to the deep-level state, residing at the position of ~0.75 eV far below the conduction band (i.e., near the valence band edge).


Sign in / Sign up

Export Citation Format

Share Document