scholarly journals PR37 An Alternative Strategy for Photon-Pair Generation using Integrated Photonics on Silicon Wafers (1640968-Y4)

2022 ◽  
Author(s):  
Shayan Mookherjee

Research activities include the design, fabrication and poling of a spontaneous parametric down-conversion (SPDC) waveguide in periodically-poled thin-film lithium niobate SPDC device, and measurements of photon-pair generation in it. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1640968 (Year 4).

2022 ◽  
Author(s):  
Shayan Mookherjee

The physical principles of entangled photon-pair generation in coupled silicon microring resonators were studied theoretically and experimentally. Summary of a Project Outcomes report of research funded by the National Science Foundation under Project Number 1201308.


2022 ◽  
Author(s):  
Shayan Mookherjee

We focus on the development of key building blocks for entangled photon-pair generation using microchips that are cost-effective, compact, energy efficient and leverages modern micro-fabrication platforms such as silicon photonics. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1640968 (Year 1).


2022 ◽  
Author(s):  
Shayan Mookherjee

Our research focused on developing integrated pair sources using silicon photonics technology. This device uses a microring resonator for pair generation. Activities performed this year include measurements of silicon photonic entangled-pair and heralded single photon generation using an integrated photonic microchip that includes the pair generation resonator as well as tunable filters. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1640968 (Year 3).


2022 ◽  
Author(s):  
Shayan Mookherjee

Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under project number 1201308. Silicon microring resonators with resonances in the O band and C band were designed, fabricated and measured.


Nanoscale ◽  
2021 ◽  
Author(s):  
Boyuan Jin ◽  
Dhananjay Mishra ◽  
Christos Argyropoulos

Spontaneous parametric down-conversion (SPDC) is one of the most versatile nonlinear optical techniques for the generation of entangled and correlated single-photon pairs. However, it suffers from very poor efficiency leading...


2022 ◽  
Author(s):  
Shayan Mookherjee

We design of compact head-end components at the transceiver level using silicon photonics to implement disaggregation for improving optical communications. We study how to use optical side channels to pass control messages without increasing the number of fibers or input/output ports. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 3).


2022 ◽  
Author(s):  
Shayan Mookherjee

We study the design of compact head-end components at the transceiver level using silicon photonics to implement disaggregation for improving optical communications, and demonstrate novel functionality at the link level. Summary of a Project Outcomes report of research funded by the U.S. National Science Foundation under Project Number 1525090 (Year 2).


Sign in / Sign up

Export Citation Format

Share Document