scholarly journals Nonlinear time series analysis of palaeoclimate proxy records

2021 ◽  
Author(s):  
Norbert Marwan ◽  
Jonathan Donges ◽  
Reik Donner ◽  
Deniz Eroglu

Identifying and characterising dynamical regime shifts, critical transitions or potential tipping points in palaeoclimate time series is relevant for improving the understanding of often highly nonlinear Earth system dynamics. Beyond linear changes in time series properties such as mean, variance, or trend, these nonlinear regime shifts can manifest as changes in signal predictability, regularity, complexity, or higher-order stochastic properties such as multi-stability.In recent years, several classes of methods have been put forward to study these critical transitions in time series data that are based on concepts from nonlinear dynamics, complex systems science, information theory, and stochastic analysis. These includeapproaches such as phase space-based recurrence plots and recurrence networks, visibility graphs, order pattern-based entropies, and stochastic modelling.Here, we review and compare in detail several prominent methods from these fields by applying them to the same set of marine palaeoclimate proxy records of African climate variations during the past 5~million years. Applying these methods, we observe notable nonlinear transitions in palaeoclimate dynamics in these marine proxy records and discuss them in the context of important climate events and regimes such as phases of intensified Walker circulation, marine isotope stage M2, the onset of northern hemisphere glaciation and the mid-Pleistocene transition. We find that the studied approaches complement each other by allowing us to point out distinct aspects of dynamical regime shifts in palaeoclimate time series.We also detect significant correlations of these nonlinear regime shift indicators with variations of Earth's orbit, suggesting the latter as potential triggers of nonlinear transitions in palaeoclimate.Overall, the presented study underlines the potentials of nonlinear time series analysis approaches to provide complementary information on dynamical regime shifts in palaeoclimate and their driving processes that cannot be revealed by linear statistics or eyeball inspection of the data alone.

2021 ◽  
Vol 274 ◽  
pp. 107245
Author(s):  
Norbert Marwan ◽  
Jonathan F. Donges ◽  
Reik V. Donner ◽  
Deniz Eroglu

Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language.


2012 ◽  
Vol 22 (03) ◽  
pp. 1250044
Author(s):  
LANCE ONG-SIONG CO TING KEH ◽  
ANA MARIA AQUINO CHUPUNGCO ◽  
JOSE PERICO ESGUERRA

Three methods of nonlinear time series analysis, Lempel–Ziv complexity, prediction error and covariance complexity were employed to distinguish between the electroencephalograms (EEGs) of normal children, children with mild autism, and children with severe autism. Five EEG tracings per cluster of children aged three to seven medically diagnosed with mild, severe and no autism were used in the analysis. A general trend seen was that the EEGs of children with mild autism were significantly different from those with severe or no autism. No significant difference was observed between normal children and children with severe autism. Among the three methods used, the method that was best able to distinguish between EEG tracings of children with mild and severe autism was found to be the prediction error, with a t-Test confidence level of above 98%.


Sign in / Sign up

Export Citation Format

Share Document