scholarly journals Sandstone body character, river styles, and geomorphology of the lower Eocene Willwood Formation, Bighorn Basin, Wyoming, USA

2021 ◽  
Author(s):  
Youwei WANG ◽  
Timothy Baars ◽  
Hiranya Sahoo ◽  
Joep Storms ◽  
Allard Martinius ◽  
...  

The lower Eocene Willwood Formation of the intermontane Bighorn Basin, Wyoming, USA, is an alluvial red bed succession with a sand content of ca. 20%-25%. The formation has been studied intensively for paleontology, paleoclimate, and sedimentary reconstruction. However, alluvial sandstone bodies and their corresponding river styles remain little characterized and documented. Here, efforts are made to study the characteristics and river styles of sandstone bodies through ca. 300 m of alluvial stratigraphy in the McCullough Peaks outcrop area based on the field data and a georeferenced 3-D photogrammetric model. Four channel facies associations are recognized, and they are ascribed to four river planform styles: distributary channel, massive trunk-shaped channel, braided channel, and sinuous channel, with the latter two styles being the more abundant. The channel sandstone bodies that show the character of sinuous rivers and those of braided rivers differ significantly in average thickness (6.1 m versus 9.0 m) and insignificantly in average width (on average 231 m) and paleoflow directions (on average N003). Braided-character dominated and sinuous-character dominated river styles are seen to alternate in the outcrop, while they show no spatial dependency in the 10 km2 study area. Bighorn Basin margins varied in the early Eocene, with differing tectonic, geological, and topographic characteristics. The observed mixture of river styles may be attributed to differential influences of axial and transverse river systems and/or climate change that controls water discharge and sediment load. An early Eocene geomorphologic reconstruction is constructed summarizing these new and earlier results.

Geology ◽  
2008 ◽  
Vol 36 (7) ◽  
pp. 531 ◽  
Author(s):  
Hayfaa Abdul Aziz ◽  
Frits J. Hilgen ◽  
Gerson M. van Luijk ◽  
Appy Sluijs ◽  
Mary J. Kraus ◽  
...  

Paleobiology ◽  
2009 ◽  
Vol 35 (1) ◽  
pp. 13-31 ◽  
Author(s):  
Amy E. Chew

The mammal fauna of the Willwood Formation, central Bighorn Basin, Wyoming, is ideal for paleoecological analysis because it is extensive, well studied, and continuously distributed over sediments representing the first 3 Myr of the early Eocene. The geology of the Bighorn Basin is also well known, providing a precise temporal framework and climatic context for the Willwood mammals. Previous analysis identified three “biohorizons,” based on simple counts of the first and last appearances of species. This study uses species diversity and appearance rates calculated from more extensive collections to approximate the ecological dynamic of the ancient fauna and assess whether the biohorizons were significant turnover events related to recently described climatic variation. Diversity and appearance data collected for this project are extensively corrected for uneven sampling, which varies by two orders of magnitude. Observed, standardized appearance and diversity estimates are subsequently compared with predicted background frequencies to identify significant variation. Important coincident shifts in the biotic parameters demonstrate that ecological change was concentrated in two discrete intervals ≤300 Kyr each that correspond with two of the original biohorizons. The intervals coincide with the onset and reversal of an episode of climate cooling identified directly from Bighorn Basin floras and sediments. Ecological changes inferred from the diversity and turnover patterns at and following the two biohorizons suggest short- and long-term faunal response to shifts in mean annual temperature on the order of 5–8°C.


Sedimentology ◽  
2013 ◽  
Vol 60 (6) ◽  
pp. 1467-1483 ◽  
Author(s):  
Hemmo A. Abels ◽  
Mary J. Kraus ◽  
Philip D. Gingerich

2008 ◽  
Vol 82 (6) ◽  
pp. 1074-1113 ◽  
Author(s):  
Mary T. Silcox ◽  
Kenneth D. Rose ◽  
Thomas M. Bown

We present a critical review of the alpha taxonomy and evolution of Eocene North American paromomyid primates, based on analysis of more than 570 stratigraphically controlled dental and gnathic specimens from the early Eocene of the southern Bighorn Basin, Wyoming (Wasatchian, Willwood Formation). In addition to documenting numerous previously unpublished specimens of known taxa (including deciduous teeth), we also describe a new species, Phenacolemur willwoodensis n. sp., from the upper part of the Willwood Formation (Wa 5 and 6). The new species is intermediate in size between Phenacolemur simonsi and Phenacolemur citatus and has both primitive features (e.g., retention of m2–3 paraconids, relatively long molar trigonids) and derived traits (e.g., relatively reduced paraconid on m1 and no p4 paracristid, unlike Paromomys). Overall patterns of dental evolution in southern Bighorn Basin paromomyids provide some support for previously hypothesized periods of faunal change (Biohorizons). In particular, Phenacolemur praecox evolves into the similarly sized but morphologically distinct Phenacolemur fortior at Biohorizon A, and P. fortior is replaced by P. citatus just below Biohorizon B. Two taxa previously believed to have become extinct at Biohorizon A (Ignacius graybullianus, P. simonsi) are shown to have persisted about a million years longer than previously thought. The Bighorn Basin paromomyids are of general interest in comprising a very dense sample that allows for the study of patterns of evolution against the backdrop of well-understood patterns of change in other mammalian lineages, and in climatic variables.


Sign in / Sign up

Export Citation Format

Share Document