scholarly journals Pharmacological fMRI provides evidence for opioidergic modulation of discrimination of facial pain expressions

2020 ◽  
Author(s):  
Yili Zhao ◽  
Markus Rütgen ◽  
Lei Zhang ◽  
Claus Lamm

The endogenous opioid system is strongly involved in the modulation of pain. However, the potential role of this system in perceiving painful facial expressions from others has not been sufficiently explored as of yet. To elucidate the contribution of the opioid system to the perception of painful facial expressions, we conducted a double-blind, within-subjects pharmacological functional magnetic resonance imaging (fMRI) study, in which 42 participants engaged in an emotion discrimination task (pain vs. disgust expressions) in two experimental sessions, receiving either the opioid receptor antagonist naltrexone or an inert substance (placebo). On the behavioral level, participants less frequently judged an expression as pain under naltrexone as compared to placebo. On the neural level, parametric modulation of activation in the (putative) right fusiform face area (FFA), which was correlated with increased pain intensity, was higher under naltrexone than placebo. Regression analyses revealed that brain activity in the right FFA significantly predicted behavioral performance in disambiguating pain from disgust, both under naltrexone and placebo. These findings suggest that reducing opioid system activity decreased participants' sensitivity for facial expressions of pain, and that this was linked to possibly compensatory engagement of processes related to visual perception, rather than to higher level affective processes, and pain regulation.

Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 809-812
Author(s):  
O. Valverde ◽  
M.-C. Fournié-Zaluski ◽  
B. P. Roques ◽  
R. Maldonado

2014 ◽  
Vol 125 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Shiroh Kishioka ◽  
Norikazu Kiguchi ◽  
Yuka Kobayashi ◽  
Fumihiro Saika

2021 ◽  
Vol 89 (9) ◽  
pp. S385
Author(s):  
Cheng Jiang ◽  
Ralph DiLeone ◽  
Christopher Pittenger ◽  
Ronald Duman

1988 ◽  
Vol 105 (2) ◽  
pp. 162-164 ◽  
Author(s):  
G. N. Kryzhanovskii ◽  
L. P. Bakuleva ◽  
N. L. Luzina ◽  
V. A. Vinogradov ◽  
K. N. Yarygin ◽  
...  

2007 ◽  
Vol 52 (3) ◽  
pp. 931-948 ◽  
Author(s):  
Pilar Sánchez-Cardoso ◽  
Alejandro Higuera-Matas ◽  
Sonsoles Martín ◽  
Nuria del Olmo ◽  
Miguel Miguéns ◽  
...  

Author(s):  
Philippe Pfeifer ◽  
Alexandra Sebastian ◽  
Hans Georg Buchholz ◽  
Christoph P. Kaller ◽  
Gerhard Gründer ◽  
...  

AbstractD2-like dopamine receptors in animals and humans have been shown to be linked to impulsive behaviors that are highly relevant for several psychiatric disorders. Here, we investigate the relationship between the fronto-striatal D2/D3 dopamine receptor availability and response inhibition in a selected population of healthy OPRM1 G-allele carriers. Twenty-two participants successively underwent blood-oxygen level dependent functional magnetic resonance imaging (fMRI) while performing a stop-signal task and a separate positron emission tomography (PET) scan. Striatal and extrastriatal D2/D3 dopamine receptor availability was measured using the radiotracer [18F]fallypride. Caudate D2/D3 dopamine receptor availability positively correlated with stopping-related fronto-striatal fMRI activation. In addition, right prefrontal D2/D3 dopamine receptor availability correlated positively with stopping-related striatal fMRI BOLD signal. Our study partially replicates previous findings on correlations between striatal D2/D3 dopamine receptor availability and response inhibition in a population selected for its genetic determination of dopamine response to alcohol and as a modulator of impulse control via the endogenous opioid system. We confirm the important role of D2/D3 dopamine receptor availability in the fronto-striatal neural circuit for response inhibition. Moreover, we extend previous findings suggesting that dopamine receptor availability in the right inferior frontal cortex, a crucial region of the stopping network, is also strongly associated with stopping-related striatal fMRI activity in healthy OPRM1 G-allele carriers.


1997 ◽  
Vol 273 (3) ◽  
pp. R956-R959 ◽  
Author(s):  
M. Bertolucci ◽  
C. Perego ◽  
M. G. De Simoni

The central endogenous opioid system is involved in the modulation of interleukin (IL)-6, an inflammatory cytokine that plays a major role in the acute phase response. The present study evaluates whether specific opioid receptor subtypes are selectively involved in this immunomodulatory action. IL-1 beta was administered either intracerebroventricularly or intraperitoneally at the dose of 400 ng to rats pretreated with the mu-antagonist beta-funaltrexamine, the delta-antagonist naltrindole, or the kappa-antagonist nor-binaltorphimine, each at the doses of 1, 10, and 100 micrograms/rat intracerebroventricularly. Serum IL-6 levels were measured 2 h later. The results show that mu-receptor blockade increases, whereas delta-receptor blockade decreases IL-6 induction, suggesting that the fine tuning exerted by opioids on the immune system may be achieved through a balance of opposing effects. Moreover the three antagonists affect IL-6 induction by central and peripheral IL-1 beta with a similar pattern, indicating that the brain endogenous opioid system plays a general role in the regulation of this cytokine.


2014 ◽  
Vol 39 (13) ◽  
pp. 2974-2988 ◽  
Author(s):  
Javier Gutiérrez-Cuesta ◽  
Aurelijus Burokas ◽  
Samantha Mancino ◽  
Sami Kummer ◽  
Elena Martín-García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document