opioid receptor
Recently Published Documents


TOTAL DOCUMENTS

7705
(FIVE YEARS 1028)

H-INDEX

143
(FIVE YEARS 13)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chenran Wang ◽  
Shen Sun ◽  
Jing Jiao ◽  
Xinhua Yu ◽  
Shaoqiang Huang

Abstract Background Delta-opioid receptor is widely expressed in human and rodent hearts, and has been proved to protect cardiomyocytes against ischemia/reperfusion and heart failure. The antagonist of delta-opioid receptor could block the rescue effect of lipid emulsion against local anesthetic cardiotoxicity. However, no evidence is available for the direct effect of delta-opioid-receptor agonists on the cardiotoxicity of local anesthetics. Methods Anesthetized Sprague Dawley rats were divided into five groups. Group NS received 2 ml·kg−1·min−1 normal saline, group LE received 2 ml·kg−1·min−1 30% lipid emulsion and group BW received 0.1, 1.0, or 5.0 mg/kg BW373U86, a delta-opioid-receptor agonist, for 5 min. Then 0.5% bupivacaine was infused intravenously at a rate of 3.0 mg·kg−1·min−1 until asystole. The time of arrhythmia, 50% mean arterial pressure-, 50% heart rate-reduction and asystole were recorded, and the dose of bupivacaine at each time point was calculated. Results All three different doses of BW373U86 did not affect the arrhythmia, 50% mean arterial pressure-reduction, 50% heart rate-reduction and asystole dose of bupivacaine compared with group NS. 30% LE significantly increased the bupivacaine threshold of 50% mean arterial pressure-reduction (17.9 [15.4–20.7] versus 7.2 [5.9–8.7], p = 0.018), 50% heart rate-reduction (18.7 ± 4.2 versus 8.8 ± 1.7, p < 0.001) and asystole (26.5 [21.0–29.1] versus 11.3 [10.7–13.4], p = 0.008) compared with group NS. There was no difference between group LE and group NS in the arrhythmia dose of bupivacaine (9.9 [8.9–11.7] versus 5.6 [4.5–7.0], p = 0.060). Conclusions Our data show that BW373U86 does not affect the cardiotoxicity of bupivacaine compared with NS control in rats. 30% LE pretreatment protects the myocardium against bupivacaine-induced cardiotoxicity.


2022 ◽  
Author(s):  
Sophia Shevick ◽  
Stephan Freeman ◽  
Guanghu Tong ◽  
Robin Russo ◽  
Laura Bohn ◽  
...  

The fungal metabolite collybolide attracted attention as a non-nitrogenous, potent and biased agonist of the kappa-opioid receptor (KOR). Here we report a 10-step asymmetric synthesis of this complex sesquiterpene that enables facile access to either enantiomer. The synthesis relies on a diastereoselective α-benzoyloxylation to install the buried C6 benzoate and avoid irreversible translactonization of the congested, functionally dense core. Neither enantiomer, however, exhibited KOR agonism, indicating that collybolide has been mischaracterized as a KOR agonist and leaving open the basis for antipruritic effects in mice.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mark A. Smith ◽  
Shannon L. Ballard ◽  
Clarise F. Ballesteros ◽  
Samantha A. Bonge ◽  
Alexander T. Casimir ◽  
...  

Opioids and stimulants are often used in combination for both recreational and non-recreational purposes. High-efficacy mu opioid agonists generally increase the behavioral effects of stimulants, whereas opioid receptor antagonists generally attenuate the behavioral effects of stimulants; however, less is known regarding the interactions between stimulants and opioids possessing low to intermediate efficacy at the mu receptor. The purpose of this study was to examine the role of an opioid's relative efficacy at the mu receptor in altering the behavioral effects of dextro(d-)amphetamine. To this end, opioids possessing a range of relative efficacy at the mu receptor were examined alone and in combination with cumulative doses of d-amphetamine on a test of open-field, locomotor activity in male rats. Levorphanol, buprenorphine, butorphanol, nalbuphine, (-)-pentazocine, (-)-metazocine, (-)-cyclazocine, (-)-NANM, and nalorphine increased the locomotor effects of d-amphetamine in either an additive or greater-than-additive manner according to an effect-additive model. Only the selective, high-efficacy kappa agonist, spiradoline, and the non-selective opioid receptor antagonist, naloxone, failed to increase the effects of d-amphetamine under the conditions examined. These data indicate that opioids possessing a large range of relative efficacy at the mu receptor, including those possessing very low relative efficacy, significantly increase the locomotor effects of d-amphetamine.


2022 ◽  
pp. 108938
Author(s):  
Meiling Deng ◽  
Zengli Zhang ◽  
Manyu Xing ◽  
Xia Liang ◽  
Zhengyiqi Li ◽  
...  

Author(s):  
Harold L. Haun ◽  
Christina L. Lebonville ◽  
Matthew G. Solomon ◽  
William C. Griffin ◽  
Marcelo F. Lopez ◽  
...  

2021 ◽  
Author(s):  
Rutger van der Schrier ◽  
Jack D. C. Dahan ◽  
Martijn Boon ◽  
Elise Sarton ◽  
Monique van Velzen ◽  
...  

Opioids may produce life-threatening respiratory depression and death from their actions at the opioid receptors within the brainstem respiratory neuronal network. Since there is an increasing number of conditions where the administration of the opioid receptor antagonist naloxone is inadequate or undesired, there is an increased interest in the development of novel reversal and prevention strategies aimed at providing efficacy close to that of the opioid receptor antagonist naloxone but with fewer of its drawbacks such as its short duration of action and lesser ability to reverse high-affinity opioids, such as carfentanil, or drug combinations. To give an overview of this highly relevant topic, the authors systematically discuss predominantly experimental pharmacotherapies, published in the last 5 yr, aimed at reversal of opioid-induced respiratory depression as alternatives to naloxone. The respiratory stimulants are discussed based on their characteristics and mechanism of action: nonopioid controlled substances (e.g., amphetamine, cannabinoids, ketamine), hormones (thyrotropin releasing hormone, oxytocin), nicotinic acetylcholine receptor agonists, ampakines, serotonin receptor agonists, antioxidants, miscellaneous peptides, potassium channel blockers acting at the carotid bodies (doxapram, ENA001), sequestration techniques (scrubber molecules, immunopharmacotherapy), and opioids (partial agonists/antagonists). The authors argue that none of these often still experimental therapies are sufficiently tested with respect to efficacy and safety, and many of the agents presented have a lesser efficacy at deeper levels of respiratory depression, i.e., inability to overcome apnea, or have ample side effects. The authors suggest development of reversal strategies that combine respiratory stimulants with naloxone. Furthermore, they encourage collaborations between research groups to expedite development of viable reversal strategies of potent synthetic opioid-induced respiratory depression.


Sign in / Sign up

Export Citation Format

Share Document