scholarly journals Molecular Epidemiology and Antigenic Characterization of Seasonal Influenza Viruses Circulating in Nepal

2017 ◽  
Vol 15 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Bishu Prasad Upadhyay ◽  
Prakash Ghimire ◽  
Masato Tashiro ◽  
Mogha Raj Banjara

Background: Influenza is one of the public health burdens in Nepal and its epidemiology is not clearly understood. The objective of this study was to explore the molecular epidemiology and the antigenic characteristics of the circulating influenza viruses in Nepal.Methods: A total of 1495 throat swab specimens were collected from January to December, 2014. Real time PCR assay was used for identification of influenza virus types and subtypes. Ten percent of the positive specimens were randomly selected and inoculated onto Madin-Darby Canine Kidney Epithelial cells (MDCK) for influenza virus isolation. All viruses were characterized by the hemagglutination inhibition (HI) assay.Results: Influenza viruses were detected in 421/1495 (28.2%) specimens. Among positive cases, influenza A virus was detected in 301/421 (71.5%); of which 120 (39.9%) were influenza A/H1N1 pdm09 and 181 (60.1%) were influenza A/H3 subtype. Influenza B viruses were detected in 119/421 (28.3%) specimens. Influenza A/H1N1 pdm09, A/H3 and B viruses isolated in Nepal were antigenically similar to the vaccine strain influenza A/California/07/2009(H1N1pdm09), A/Texas/50/2012(H3N2), A/New York/39/2012(H3N2) and B/Massachusetts/2/2012, respectively.Conclusions: Influenza viruses were reported year-round in different geographical regions of Nepal which was similar to other tropical countries. The circulating influenza virus type and subtypes of Nepal were similar to vaccine candidate virus which could be prevented by currently used influenza vaccine.

2018 ◽  
Vol 3 (2) ◽  
pp. 1-2
Author(s):  
Bishnu Prasad Upadhyay

Influenza virus type A and B are responsible for seasonal epidemics as well as pandemics in human. Influenza A viruses are further divided into two major groups namely, low pathogenic seasonal influenza (A/H1N1, A/H1N1 pdm09, A/H3N2) and highly pathogenic influenza virus (H5N1, H5N6, H7N9) on the basis of two surface antigens: hemagglutinin (HA) and neuraminidase (NA). Mutations, including substitutions, deletions, and insertions, are one of the most important mechanisms for producing new variant of influenza viruses. During the last 30 years; more than 50 viral threat has been evolved in South-East Asian countriesof them influenza is one of the major emerging and re-emerging infectious diseases of global concern. Similar to tropical and sub-tropical countries of Southeast Asia; circulation of A/H1N1 pdm09, A/H3N2 and influenza B has been circulating throughout the year with the peak during July-November in Nepal. However; the rate of infection transmission reach peak during the post-rain and winter season of Nepal.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Vusie Lokotfwako ◽  
Nhlanhla Nhlabatsi ◽  
Phinda Khumalo ◽  
Siphiwe Shongwe ◽  
Bongani Tsabedze ◽  
...  

ObjectiveTo establish morbidity patterns of influenza A/H1N1 in Swaziland from 10th July to 15th August 2017.IntroductionInfluenza infection is caused by the influenza virus, a single-stranded RNA virus belonging to the Orthomyxoviridae family. Influenza viruses are classified as types A, B and C. Influenza A and B viruses can cause epidemic disease in humans and type C viruses usually cause a mild, cold-like illness. The influenza virus spreads rapidly around the world in seasonal epidemics, resulting in significant morbidity and mortality. On the 10th of July 2017, a case of confirmed Influenza A/H1N1 was reported through the immediate disease notification system from a private hospital in the Hhohho region. A 49 year old female was diagnosed of Influenza A/H1N1 after presenting with flu-like symptoms. Contacts of the index case were followed and further positive cases were identified.MethodsUpon identification of the index case, the rapid response teams conducted further investigations. Two nasal swaps from each sample were taken and sent to a private laboratory in South Africa for the detection of the virus RNA using RT-PCR to assess for the presence Influenza A, B and Influenza A/H1N1. Further laboratory results were sourced from a private laboratory to monitor trends of influenza. Data was captured and analyzed in STATA version 12 from STATA cooperation. Descriptive statistics were carried out using means and standard deviations. The Pearson Chi square test and student t test were used to test for any possible association between influenza A/H1N1 and the explanatory variables (age and sex).ResultsSurveillance data captured between 10th July 2017 and 15th August 2017 indicated that a total of 87 patients had their samples taken for laboratory confirmation. There were 45 females and 42 males and the mean age was 27 years (SD= 17). At least 25 of the 87 patients tested positive for influenza A while only 1 tested positive for influenza B. The prevalence of influenza A/H1N1 was 16%. The prevalence of influenza A/H1N1 among males was 19% compared to 13% in females; however the difference was not statistically significant (p=0.469). There was no association noted between age and influenza A/H1N1 (p=427). Upon further sub-typing results indicated that the circulating strain was influenza A/H1N1 pdm 09 strain which is a seasonal influenza. The epidemic task forces held weekly and ad-hoc meetings to provide feedback to principals and health messaging to the general population to allay anxiety.ConclusionsThough WHO has classified the influenza A/H1N1 strain pdm 0029 as a seasonal influenza, surveillance remains important for early detection and management. There is therefore an urgent need to set up sentinel sites to monitor and understand the circulating influenza strains. Health promotion remains crucial to dispel anxiety as the general public still link any influenza to the 2009 pandemic influenza. Finally the Ministry of Health should consider introducing influenza vaccines into the routine immunization schedule especially for children.References1. Global Epidemiological Surveillance Standards for Influenza. 2014 [cited 2015 15 April]; Available from: http://www.who.int/influenza/resources/documents/influenza_surveillance_manual/en/.2. Human cases of influenza at the human-animal interface, 2013. Wkly Epidemiol Rec, 2014.89(28): p. 309-20.3. WHO Global Influenza Surveillance Network. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011 [cited 2015 April27]; Available from: http://www.who.int/influenza/gisrs_laboratory/manual_diagnosis_surveillance_influenza/en/.


2018 ◽  
Vol 23 (7) ◽  
Author(s):  
Hamutal Yaron-Yakoby ◽  
Hanna Sefty ◽  
Rakefet Pando ◽  
Rita Dichtiar ◽  
Mark A Katz ◽  
...  

Introduction Influenza vaccine is recommended for the entire population in Israel. We assessed influenza vaccine effectiveness (VE) for the 2014/15 and 2015/16 seasons in Israel, for the first time. Methods: Combined nose and throat swab specimens were collected from patients with influenza-like illness (ILI) presenting to sentinel primary care clinics and tested for influenza virus by RT-PCR. VE of the trivalent inactivated vaccine (TIV) was assessed using test-negative case–control design. Results: During the 2014/15 season 1,142 samples were collected; 327 (28.6%) were positive for influenza, 83.8% A(H3N2), 5.8% A(H1N1)pdm09, 9.2% B and 1.2% A un-subtyped. Adjusted VE against all influenza viruses for this influenza season was −4.8% (95% confidence interval (CI): −54.8 to 29.0) and against influenza A(H3N2), it was −15.8% (95% CI: −72.8 to 22.4). For the 2015/16 season, 1,919 samples were collected; 853 (44.4%) were positive for influenza, 43.5% A(H1N1)pdm09, 57% B, 0.7% A(H3N2) and 11 samples positive for both A(H1N1)pdm09 and B. Adjusted VE against all influenza viruses for this influenza season was 8.8% (95% CI: −25.1 to 33.5), against influenza A(H1N1)pdm09, it was 32.3% (95% CI: (−4.3 to 56.1) and against influenza B, it was −2.2% (95% CI: (−47.0 to 29.0). Conclusions: Using samples from patients with ILI visiting sentinel clinics in Israel, we demonstrated the feasibility of influenza VE estimation in Israel.


2009 ◽  
Vol 138 (2) ◽  
pp. 199-209 ◽  
Author(s):  
P. J. BLAIR ◽  
T. F. WIERZBA ◽  
S. TOUCH ◽  
S. VONTHANAK ◽  
X. XU ◽  
...  

SUMMARYThe epidemiology, symptomology, and viral aetiology of endemic influenza remain largely uncharacterized in Cambodia. In December 2006, we established passive hospital-based surveillance to identify the causes of acute undifferentiated fever in patients seeking healthcare. Fever was defined as tympanic membrane temperature >38°C. From December 2006 to December 2008, 4233 patients were screened for influenza virus by real-time reverse-transcriptase polymerase chain reaction (rRT–PCR). Of these patients, 1151 (27·2%) were positive for influenza. Cough (68·8%vs. 50·5%,P<0·0001) and sore throat (55·0%vs. 41·9%,P<0·0001) were more often associated with laboratory-confirmed influenza-infected patients compared to influenza-negative enrollees. A clear influenza season was evident between July and December with a peak during the rainy season. Influenza A and B viruses were identified in 768 (66·3%) and 388 (33·7%) of the influenza-positive population (n=1153), respectively. In December 2008, passive surveillance identified infection of the avian influenza virus H5N1 in a 19-year-old farmer from Kandal province who subsequently recovered. From a subset of diagnostic samples submitted in 2007, 15 A(H1N1), seven A(H3N2) and seven B viruses were isolated. The predominant subtype tested was influenza A(H1N1), with the majority antigenically related to the A/Solomon Island/03/2006 vaccine strain. The influenza A(H3N2) isolates and influenza B viruses analysed were closely related to A/Brisbane/10/2007 or B/Ohio/01/2005 (B/Victoria/2/87-lineage) vaccine strains, respectively. Phylogenetic analysis of the HA1 region of the HA gene of influenza A(H1N1) viruses demonstrated that the Cambodian isolates belonged to clade 2C along with representative H1N1 viruses circulating in SE Asia at the time. These viruses remained sensitive to oseltamivir. In total, our data suggest that viral influenza infections contribute to nearly one-fifth of acute febrile illnesses and demonstrate the importance of influenza surveillance in Cambodia.


1978 ◽  
Vol 80 (1) ◽  
pp. 13-19 ◽  
Author(s):  
N. Masurel ◽  
J. I. de Bruijne ◽  
H. A. Beuningh ◽  
H. J. A. Schouten

SUMMARYHaemagglutination inhibition (HI) antibodies against the influenza viruses A/Hong Kong/8/68 (H3N2) and B/Nederland/77/66 were determined in 420 paired sera from mothers and newborns (umbilical cord sera), sampled in 1970–1.A higher concentration of antibodies against influenza A virus was found more frequently in neonatal than in maternal sera. By contrast, low titres against influenza B virus were more frequently observed in neonatal than in maternal sera. Maternal age, duration of pregnancy, and birth-weight did not affect the results of the tests.It is suggested that the titre of the newborn against an epidemic influenza virus can be predicted from that of the mother. Furthermore, the maternal titre may be an indication of the susceptibility of the newborn infant to influenza infections.


2020 ◽  
pp. 153537022096379
Author(s):  
Oraphan Mayuramart ◽  
Pattaraporn Nimsamer ◽  
Somruthai Rattanaburi ◽  
Naphat Chantaravisoot ◽  
Kritsada Khongnomnan ◽  
...  

Due to the common symptoms of COVID-19, patients are similar to influenza-like illness. Therefore, the detection method would be crucial to discriminate between SARS-CoV-2 and influenza virus-infected patients. In this study, CRISPR-Cas12a-based detection was applied for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus which would be a practical and attractive application for screening of patients with COVID-19 and influenza in areas with limited resources. The limit of detection for SARS-CoV-2, influenza A, and influenza B detection was 10, 103, and 103 copies/reaction, respectively. Moreover, the assays yielded no cross-reactivity against other respiratory viruses. The results revealed that the detection of influenza virus and SARS-CoV-2 by using RT-RPA and CRISPR-Cas12a technology reaches 96.23% sensitivity and 100% specificity for SARS-CoV-2 detection. The sensitivity for influenza virus A and B detections was 85.07% and 94.87%, respectively. In addition, the specificity for influenza virus A and B detections was approximately 96%. In conclusion, the RT-RPA with CRISPR-Cas12a assay was an effective method for the screening of influenza viruses and SARS-CoV-2 which could be applied to detect other infectious diseases in the future.


2019 ◽  
Vol 220 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Tatiana Schäffer Gregianini ◽  
Ivana R Santos Varella ◽  
Patricia Fisch ◽  
Letícia Garay Martins ◽  
Ana B G Veiga

Abstract Influenza surveillance is important for disease control and should consider possible coinfection with different viruses, which can be associated with disease severity. This study analyzed 34 459 patients with respiratory infection from 2009 to 2018, of whom 8011 were positive for influenza A virus (IAV) or influenza B virus (IBV). We found 18 cases of dual influenza virus infection, including coinfection with 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) and influenza A(H3N2) virus (1 case), A(H1N1)pdm09 and IBV (6 cases), A(H3N2) and IBV (8 cases), and nonsubtyped IAV and IBV (3 cases); and 1 case of triple infection with A(H3N2), A(H1N1)pdm09, and IBV. Compared with 76 monoinfected patients, coinfection was significantly associated with cardiopathy and death. Besides demographic characteristics and clinical symptoms, we assessed vaccination status, antiviral treatment, timeliness of antiviral use, hospitalization, and intensive care unit admission, but no significant differences were found between coinfected and monoinfected cases. Our findings indicate that influenza virus coinfection occurs more often than previously reported and that it can lead to a worse disease outcome.


Author(s):  
Terezinha Maria de Paiva ◽  
Maria Akiko Ishida ◽  
Maria Gisele Gonçalves ◽  
Margareth Aparecida Benega ◽  
Maria Candida Oliveira de Souza ◽  
...  

Through the influenza virus surveillance from January to October 2002, influenza B/Hong Kong-like strains circulating in the Southeast and Centre East regions of Brazil have been demonstrated. This strain is a variant from B/Victoria/02/88 whose since 1991 and until recently have been isolated relatively infrequently and have been limited to South-Eastern Asia. A total of 510 respiratory secretions were collected from patients 0 to 60 years of age, with acute respiratory illness, living in the Southeast and Centre East regions of Brazil, of which 86 (17.13%) were positive for influenza virus. Among them 12 (13.95%) were characterized as B/Hong Kong/330/2001; 3 (3.49%) as B/Hong Kong/1351/2002 a variant from B/Hong Kong/330/2001; 1 (1.16%) as B/Sichuan/379/99; 1 (1.16%) as B/Shizuoka/5/2001, until now. The percentages of cases notified during the surveillance period were 34.88%, 15.12%, 15.12%, 4.65%, 15.12%, 13.95%, in the age groups of 0-4, 5-10, 11-15, 16-20, 21-30, 31-50, respectively. The highest proportion of isolates was observed among children younger than 4 years but serious morbidity and mortality has not been observed among people older than 65 years, although B influenza virus component for vaccination campaign 2002 was B/Sichuan/379/99 strain. This was probably due to the elderly protection acquired against B/Victoria/02/88. In addition, in influenza A/Panama/2007/99-like (H3N2) strains 22 (25.58%) were also detected, but influenza A(H1N1) has not been detected yet.


2010 ◽  
Vol 17 (12) ◽  
pp. 1998-2006 ◽  
Author(s):  
Ali H. Ellebedy ◽  
Thomas P. Fabrizio ◽  
Ghazi Kayali ◽  
Thomas H. Oguin ◽  
Scott A. Brown ◽  
...  

ABSTRACT Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8+ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.


2014 ◽  
Vol 9 (5) ◽  
pp. 842-847
Author(s):  
Reiko Saito ◽  
◽  
Yadanar Kyaw ◽  
Yi Yi Myint ◽  
Clyde Dapat ◽  
...  

The epidemiological study of influenza in Southeast Asia is limited. We surveyed influenza in Myanmar from 2007 to 2013. Nasopharyngeal swabs were collected from patients in the two cities of Yangon and Nay Pyi Taw. Samples were screened using rapid influenza diagnostic kits and identified by virus isolation. Isolates were characterized by cyclingprobe-based real-time PCR, drug susceptibility assay, and sequencing. Samples collected numbered 5,173, from which 1,686 influenza viruses were isolated during the seven-year study period. Of these, 187 strains were of seasonal influenza A(H1N1), 274 of influenza A(H1N1)pdm09, 791 of influenza A(H3N2), and 434 of influenza B. Interestingly, two zanamivir and amantadine-resistant strains each were detected in 2007 and 2008. These rare dual-resistant strains had a Q136K mutation in the NA protein and S31N substitution in the M2 protein. Our collaboration raised the influenza surveillance laboratory capacity in Myanmar and led Yangon’s National Health Laboratory – one of the nation’s leading research institutes – to being designated a National Influenza Center by the World Health Organization.


Sign in / Sign up

Export Citation Format

Share Document