scholarly journals FORCED CONVECTION HEAT TRANSFER OF AXIAL AIR FLOW WITH HEATSINK ON UNIFORM HEAT FLUX

2018 ◽  
Vol 22 (02) ◽  
pp. 10-21
Author(s):  
Adil Abbas Mohammed ◽  
◽  
Saad Abdulwahab Razuqi ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 350-357 ◽  
Author(s):  
P. J. Giarratano ◽  
W. G. Steward

Transient forced convection heat transfer coefficients for both subcritical and supercritical helium in a rectangular flow channel heated on one side were measured during the application of a step in heat flux. Zero flow data were also obtained. The heater surface which served simultaneously as a thermometer was a fast response carbon film. Operating conditions covered the following range: Pressure, 1.0 × 105 Pa (1 bar) to 1.0 × 106 Pa (10 bar); Temperature, 4 K–10 K; Heat Flux, 0.1 W/cm2−10 W/cm2; Reynolds number, 0–8 × 105. The experimental data and a predictive correlation are presented.


1999 ◽  
Vol 121 (2) ◽  
pp. 85-90 ◽  
Author(s):  
S. Dahl ◽  
J. Davidson

Nusselt numbers are measured in three counterflow tube-in-shell heat exchangers with flow rates and temperatures representative of thermosyphon operation in solar water heating systems. Mixed convection heat transfer correlations for these tube-in-shell heat exchangers were previously developed in Dahl and Davidson (1998) from data obtained in carefully controlled experiments with uniform heat flux at the tube walls. The data presented in this paper confirm that the uniform heat flux correlations apply under morerealistic conditions. Water flows in the shell and 50 percent ethylene glycol circulates in the tubes. Actual Nusselt numbers are within 15 percent of the values predicted for a constant heat flux boundary condition. The data reconfirm the importance of mixed convection in determining heat transfer rates. Under most operating conditions, natural convection heat transfer accounts for more than half of the total heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document