scholarly journals SUPPORTING SYSTEM FOR STRUCTURAL DESIGN OF STEEL FRAME STRUCTURES BY USING MULTI-OBJECTIVE OPTIMIZATION METHOD

2008 ◽  
Vol 73 (628) ◽  
pp. 891-897 ◽  
Author(s):  
Naoto TAMURA ◽  
Hiroshi OHMORI
2018 ◽  
Author(s):  
Rivalri Kristianto Hondro ◽  
Mesran Mesran ◽  
Andysah Putera Utama Siahaan

Procurement selection process in the acceptance of prospective students is an initial step undertaken by private universities to attract superior students. However, sometimes this selection process is just a procedural process that is commonly done by universities without grouping prospective students from superior students into a class that is superior compared to other classes. To process the selection results can be done using the help of computer systems, known as decision support systems. To produce a better, accurate and objective decision result is used a method that can be applied in decision support systems. Multi-Objective Optimization Method by Ratio Analysis (MOORA) is one of the MADM methods that can perform calculations on the value of criteria of attributes (prospective students) that helps decision makers to produce the right decision in the form of students who enter into the category of prospective students superior.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


Sign in / Sign up

Export Citation Format

Share Document