scholarly journals Perfect sampling for Gibbs point processes using partial rejection sampling

Bernoulli ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 2082-2104
Author(s):  
Sarat B. Moka ◽  
Dirk P. Kroese
1999 ◽  
Vol 31 (01) ◽  
pp. 69-87 ◽  
Author(s):  
Elke Thönnes

Recently Propp and Wilson [14] have proposed an algorithm, called coupling from the past (CFTP), which allows not only an approximate but perfect (i.e. exact) simulation of the stationary distribution of certain finite state space Markov chains. Perfect sampling using CFTP has been successfully extended to the context of point processes by, amongst other authors, Häggström et al. [5]. In [5] Gibbs sampling is applied to a bivariate point process, the penetrable spheres mixture model [19]. However, in general the running time of CFTP in terms of number of transitions is not independent of the state sampled. Thus an impatient user who aborts long runs may introduce a subtle bias, the user impatience bias. Fill [3] introduced an exact sampling algorithm for finite state space Markov chains which, in contrast to CFTP, is unbiased for user impatience. Fill's algorithm is a form of rejection sampling and similarly to CFTP requires sufficient monotonicity properties of the transition kernel used. We show how Fill's version of rejection sampling can be extended to an infinite state space context to produce an exact sample of the penetrable spheres mixture process and related models. Following [5] we use Gibbs sampling and make use of the partial order of the mixture model state space. Thus we construct an algorithm which protects against bias caused by user impatience and which delivers samples not only of the mixture model but also of the attractive area-interaction and the continuum random-cluster process.


1999 ◽  
Vol 31 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Elke Thönnes

Recently Propp and Wilson [14] have proposed an algorithm, called coupling from the past (CFTP), which allows not only an approximate but perfect (i.e. exact) simulation of the stationary distribution of certain finite state space Markov chains. Perfect sampling using CFTP has been successfully extended to the context of point processes by, amongst other authors, Häggström et al. [5]. In [5] Gibbs sampling is applied to a bivariate point process, the penetrable spheres mixture model [19]. However, in general the running time of CFTP in terms of number of transitions is not independent of the state sampled. Thus an impatient user who aborts long runs may introduce a subtle bias, the user impatience bias. Fill [3] introduced an exact sampling algorithm for finite state space Markov chains which, in contrast to CFTP, is unbiased for user impatience. Fill's algorithm is a form of rejection sampling and similarly to CFTP requires sufficient monotonicity properties of the transition kernel used. We show how Fill's version of rejection sampling can be extended to an infinite state space context to produce an exact sample of the penetrable spheres mixture process and related models. Following [5] we use Gibbs sampling and make use of the partial order of the mixture model state space. Thus we construct an algorithm which protects against bias caused by user impatience and which delivers samples not only of the mixture model but also of the attractive area-interaction and the continuum random-cluster process.


2020 ◽  
Vol 57 (3) ◽  
pp. 775-791
Author(s):  
David Dereudre ◽  
Thibaut Vasseur

AbstractWe provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption, which means that the energy of any finite configuration is superlinear with respect to the number of points. The second assumption is the so-called intensity regularity, which controls the long range of the interaction via the intensity of the process. This assumption is new and introduced here since it is well adapted to the entropy approach. As a corollary of our main result we improve the existence results by Ruelle (1970) for pairwise interactions by relaxing the superstabilty assumption. Note that our setting is not reduced to pairwise interaction and can contain infinite-range multi-body counterparts.


2012 ◽  
Vol 6 (0) ◽  
pp. 1155-1169 ◽  
Author(s):  
Adrian Baddeley ◽  
Gopalan Nair

2015 ◽  
Vol 47 (03) ◽  
pp. 761-786 ◽  
Author(s):  
Jose Blanchet ◽  
Jing Dong

We present the first class of perfect sampling (also known as exact simulation) algorithms for the steady-state distribution of non-Markovian loss systems. We use a variation of dominated coupling from the past. We first simulate a stationary infinite server system backwards in time and analyze the running time in heavy traffic. In particular, we are able to simulate stationary renewal marked point processes in unbounded regions. We then use the infinite server system as an upper bound process to simulate the loss system. The running time analysis of our perfect sampling algorithm for loss systems is performed in the quality-driven (QD) and the quality-and-efficiency-driven regimes. In both cases, we show that our algorithm achieves subexponential complexity as both the number of servers and the arrival rate increase. Moreover, in the QD regime, our algorithm achieves a nearly optimal rate of complexity.


2009 ◽  
Vol 51 (3) ◽  
pp. 522-539 ◽  
Author(s):  
Stefanie Eckel ◽  
Frank Fleischer ◽  
Pavel Grabarnik ◽  
Marian Kazda ◽  
Aila Särkkä ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document