Negative autoregulation of fibroblast growth factor receptor 2 expression characterizing cranial development in cases of Apert (P253R mutation) and Pfeiffer (C278F mutation) syndromes and suggesting a basis for differences in their cranial phenotypes

2001 ◽  
Vol 95 (4) ◽  
pp. 660-673 ◽  
Author(s):  
Jonathan A. Britto ◽  
Rachel L. Moore ◽  
Robert D. Evans ◽  
Richard D. Hayward ◽  
Barry M. Jones

Object. Heterogeneous mutations in the fibroblast growth factor receptor 2 gene (FGFR2) cause a range of craniosynostosis syndromes. The specificity of the Apert syndrome—affected cranial phenotype reflects its narrow mutational range: 98% of cases of Apert syndrome result from an Ser252Trp or Pro253Arg mutation in the immunoglobulin-like (Ig)IIIa extracellular subdomain of FGFR2. In contrast, a broad range of mutations throughout the extracellular domain of FGFR2 causes the overlapping cranial phenotypes of Pfeiffer and Crouzon syndromes and related craniofacial dysostoses. Methods. In this paper the expression of FGFR1, the IgIIIa/c and IgIIIa/b isoforms of FGFR2, and FGFR3 is investigated in Apert syndrome (P253R mutation)— and Pfeiffer syndrome (C278F mutation)—affected fetal cranial tissue and is contrasted with healthy human control tissues. Both FGFR1 and FGFR3 are normally expressed in the differentiated osteoblasts of the periosteum and osteoid, in domains overlapped by that of FGFR2, which widely include preosseous cranial mesenchyme. Expression of FGFR2, however, is restricted to domains of advanced osseous differentiation in both Apert syndrome— and Pfeiffer syndrome—affected cranial skeletogenesis in the presence of fibroblast growth factor (FGF)2, but not in the presence of FGF4 or FGF7. Whereas expression of the FGFR2-IgIIIa/b (KGFR) isoform is restricted in normal human cranial osteogenesis, there is preliminary evidence that KGFR is ectopically expressed in Pfeiffer syndrome—affected cranial osteogenesis. Conclusions. Contraction of the FGFR2-IgIIIa/c (BEK) expression domain in cases of Apert syndrome— and Pfeiffer syndrome—affected fetal cranial ossification suggests that the mutant activation of this receptor, by ligand-dependent or ligand-independent means, results in negative autoregulation. This phenomenon, resulting from different mechanisms in the two syndromes, offers a model by which to explain differences in their cranial phenotypes.

2000 ◽  
Vol 92 (4) ◽  
pp. 631-636 ◽  
Author(s):  
Dominique Renier ◽  
Vincent El Ghouzzi ◽  
Jacky Bonaventure ◽  
Martine Le Merrer ◽  
Elizabeth Lajeunie

Object. A recurrent point mutation in the fibroblast growth factor receptor 3 gene that converts proline 250 into arginine has been reported recently in cases of apparently nonsyndromic coronal craniosynostosis. The goal of the present study was to examine the phenotype of patients in whom this mutation was present, to determine the prevalence of the condition, and to assess the functional and the morphological outcome of the surgically treated patients.Methods. A DNA analysis was performed in 103 children suffering from apparently isolated coronal synostosis, 41 of whom had bilateral and 62 of whom had unilateral disease. There were 31 boys and 72 girls in the study group. Sixty cases were sporadic and 43 were familial; the 43 familial cases arose in 33 unrelated families. The mutation was found in seven (12%) of 60 sporadic cases and in 24 (73%) of the 33 families. The functional and morphological results were assessed in all surgically treated patients who had at least 1 year of follow up and who were at least 3 years of age at the time of assessment. A comparison was made between patients with the mutation and those without.Conclusions. The most typical presentation was seen in girls and consisted of a bicoronal synostosis resulting in a severe brachycephaly associated with mild hypertelorism and marked bulging of the temporal fossae, which resulted in a huge enlargement of the upper part of the face. The most frequently associated extracranial anomaly was brachydactyly, identified either clinically or radiologically. Based on the proportion of bilateral and unilateral coronal synostoses, the present data indicate that the mutation is associated with more severe cases and that girls with the mutation are more severely affected than boys. The functional and morphological results were worse in patients in whom the mutation was present as compared with those in whom it was not.


2001 ◽  
Vol 98 (13) ◽  
pp. 7182-7187 ◽  
Author(s):  
O. A. Ibrahimi ◽  
A. V. Eliseenkova ◽  
A. N. Plotnikov ◽  
K. Yu ◽  
D. M. Ornitz ◽  
...  

1994 ◽  
Vol 8 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Maximilian Muenke ◽  
Ute Schell ◽  
Andreas Hehr ◽  
Nathaniel H. Robin ◽  
H. Wolfgang Losken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document