fibroblast growth factor
Recently Published Documents





Cassandra L Lamb ◽  
Sarah L. Giesy ◽  
Molly M McGuckin ◽  
James W. Perfield ◽  
Anthony Butterfield ◽  

During metabolically demanding physiological states, ruminants and other mammals coordinate nutrient use among tissues by varying the set point of insulin action. This set point is regulated in part by metabolic hormones with some antagonizing (e.g., growth hormone and TNFa) and others potentiating (e.g., adiponectin) insulin action. Fibroblast growth factor-21 (FGF21) was recently identified as a sensitizing hormone in rodent and primate models of defective insulin action. FGF21 administration, however, failed to improve insulin action in dairy cows during the naturally occurring insulin resistance of lactation, raising the possibility that ruminants as a class of animals or lactation as a physiological state are unresponsive to FGF21. To start addressing this question, we asked whether FGF21 could improve insulin action in non-lactating ewes. Gene expression studies showed that the ovine FGF21 system resembles that of other species, with liver as the major site of FGF21 expression and adipose tissue as a target tissue based on high expression of the FGF21 receptor complex and activation of p44/42 ERK1/2 following exogenous FGF21 administration. FGF21 treatment for 13 days reduced plasma glucose and insulin over the entire treatment period and improved glucose disposal during a glucose tolerance test. FGF21 increased plasma adiponectin by day 3 of treatment but had no effect on the plasma concentrations of total, C16:0-, or C18:0-ceramide. Overall, these data confirm that the insulin-sensitizing effects of FGF21 are conserved in ruminants and raise the possibility that lactation is an FGF21 resistant state.

2022 ◽  
Vol 12 (1) ◽  
Brittany L. Mason ◽  
Abu Minhajuddin ◽  
Andrew H. Czysz ◽  
Manish K. Jha ◽  
Bharathi S. Gadad ◽  

AbstractFibroblast growth factor 21 (FGF21) is a key regulator of metabolic function and nutrient preference. It also affects biological pathways associated with major depressive disorder (MDD), including corticotrophin-releasing hormone (CRH), leptin, and sympathetic activity. Lower levels of cerebrospinal fluid FGF21 have been associated with higher Beck Depression Inventory scores. FGF21 was examined as a metabolic marker that could be associated with MDD and evaluated as a biomarker of antidepressant treatment response in a large, randomized placebo-controlled trial in chronic, early-onset MDD participants. FGF21 levels at baseline and during treatment were determined for participants in the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study. FGF21 was analyzed by ELISA in individuals with chronic, early-onset MDD (first major depressive episode before 30 years) compared to healthy control participants. Participants with MDD had higher levels of FGF21 compared to healthy controls (HCs), even after controlling for baseline age, sex, race, Hispanic ethnicity, BMI, and site (β-coefficient = 1.20, p < 0.0001, Cohen’s d = 0.60). FGF21 did not change over time nor differ between treatment groups. Interestingly though, those with normal BMI and lower FGF21 levels showed a reduction in depression severity over time compared to all other groups. In conclusion, depression is associated with higher levels of FGF21 compared to healthy controls and those with lower levels of FGF21 (25th percentile of the sample) in the context of normal-weight BMI seem to have improved depression severity over time.

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Liuzhang Fan ◽  
Lingyun Gu ◽  
Yuyu Yao ◽  
Genshan Ma

Objective. The aim of this study was to evaluate the roles of fibroblast growth factor 21 (FGF21) in heart failure patients with reduced ejection fraction and its association with Heart Failure with reduced Ejection Fraction (HFrEF). Methods. The level of FGF21 was measured by enzyme-linked immunosorbent assay (ELISA) in 199 subjects enrolled in this study, including 128 subjects with HFrEF and 71 control subjects. The mean follow-up time was 13.36 months. The left ventricular end-diastolic diameter (LVEDD) and left ventricular ejection fraction (LVEF) percentage were evaluated by the 2D echocardiography. Serum brain natriuretic peptide (BNP) was measured in the routine clinical laboratory. Results. The serum FGF21 level was evidently higher in patients with HFrEF than in the control group ( 228.72 ± 24.04 vs. 171.60 ± 12.98 , p < 0.001 ). After 1 year of follow-up, 61 patients (47.66%) with heart failure were readmitted to the hospital, including 8 deaths (13.11%). The AUC of the receiver operating characteristic (ROC) curve for the predictive value of FGF21 for prognosis was 0.964. Kaplan-Meier analysis results showed that there were significant differences in the 1-year mortality and heart failure readmission events between the grouped subjects. A poor prognosis was correlated with the serum level of FGF21, BNP, LVEDD, and LVEF, which was confirmed by the univariate Cox analysis. Conclusion. FGF21 was independently associated with an increased risk of mortality and readmission HFrEF patients. Therefore, FGF21 has the potential to be a biomarker for the progression of HFrEF in patients.

2022 ◽  
Vol 12 (1) ◽  
Shuai Li ◽  
Haibo Jia ◽  
Zhihang Liu ◽  
Nan Wang ◽  
Xiaochen Guo ◽  

AbstractFibroblast growth factor-21 (FGF-21) performs a wide range of biological functions in organisms. Here, we report for the first time that FGF-21 suppresses thrombus formation with no notable risk of bleeding. Prophylactic and therapeutic administration of FGF-21 significantly improved the degree of vascular stenosis and reduced the thrombus area, volume and burden. We determined the antithrombotic mechanism of FGF-21, demonstrating that FGF-21 exhibits an anticoagulant effect by inhibiting the expression and activity of factor VII (FVII). FGF-21 exerts an antiplatelet effect by inhibiting platelet activation. FGF-21 enhances fibrinolysis by promoting tissue plasminogen activator (tPA) expression and activation, while inhibiting plasminogen activator inhibitor 1 (PAI-1) expression and activation. We further found that FGF-21 mediated the expression and activation of tPA and PAI-1 by regulating the ERK1/2 and TGF-β/Smad2 pathways, respectively. In addition, we found that FGF-21 inhibits the expression of inflammatory factors in thrombosis by regulating the NF-κB pathway.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 278
Lan Yu ◽  
Mervi Toriseva ◽  
Syeda Afshan ◽  
Mario Cangiano ◽  
Vidal Fey ◽  

Fibroblast growth factor receptors (FGFRs) 1–4 are involved in prostate cancer (PCa) regulation, but the role of FGFR-like 1 (FGFRL1) in PCa is unclear. FGFRL1 expression was studied by qRT-PCR and immunohistochemistry of patient tissue microarrays (TMAs) and correlated with clinical patient data. The effects of FGFRL1 knockdown (KD) in PC3M were studied in in vitro culture models and in mouse xenograft tumors. Our results showed that FGFRL1 was significantly upregulated in PCa. The level of membranous FGFRL1 was negatively associated with high Gleason scores (GSs) and Ki67, while increased cytoplasmic and nuclear FGFRL1 showed a positive correlation. Cox regression analysis indicated that nuclear FGFRL1 was an independent prognostic marker for biochemical recurrence after radical prostatectomy. Functional studies indicated that FGFRL1-KD in PC3M cells increases FGFR signaling, whereas FGFRL1 overexpression attenuates it, supporting decoy receptor actions of membrane-localized FGFRL1. In accordance with clinical data, FGFRL1-KD markedly suppressed PC3M xenograft growth. Transcriptomics of FGFRL1-KD cells and xenografts revealed major changes in genes regulating differentiation, ECM turnover, and tumor–stromal interactions associated with decreased growth in FGFRL1-KD xenografts. Our results suggest that FGFRL1 upregulation and altered cellular compartmentalization contribute to PCa progression. The nuclear FGFRL1 could serve as a prognostic marker for PCa patients.

Sign in / Sign up

Export Citation Format

Share Document