Upper Triassic lithostratigraphy, depositional systems, and vertebrate paleontology across southern Utah

2017 ◽  
Vol 4 ◽  
pp. 99-180 ◽  
Author(s):  
Jeffrey Martz ◽  
James Kirkland ◽  
Andrew Milner ◽  
William Parker ◽  
Vincent Santucci

The Chinle Formation and the lower part of the overlying Wingate Sandstone and Moenave Formation were deposited in fluvial, lacustrine, paludal, and eolian environments during the Norian and Rhaetian stages of the Late Triassic (~230 to 201.3 Ma), during which time the climate shifted from subtropical to increasingly arid. In southern Utah, the Shinarump Member was largely confined to pre-Chinle paleovalleys and usually overprinted by mottled strata. From southeastern to southwestern Utah, the lower members of the Chinle Formation (Cameron Member and correlative Monitor Butte Member) thicken dramatically whereas the upper members of the Chinle Formation (the Moss Back, Petrified Forest, Owl Rock, and Church Rock Members) become erosionally truncated; south of Moab, the Kane Springs beds are laterally correlative with the Owl Rock Member and uppermost Petrified Forest Member. Prior to the erosional truncation of the upper members, the Chinle Formation was probably thickest in a southeast to northwest trend between Petrified Forest National Park and the Zion National Park, and thinned to the northeast due to the lower Chinle Formation lensing out against the flanks of the Ancestral Rocky Mountains, where the thickness of the Chinle is largely controlled by syndepositional salt tectonism. The Gartra and Stanaker Members of the Ankareh Formation are poorly understood Chinle Formation correlatives north of the San Rafael Swell. Osteichthyan fish, metoposaurid temnospondyls, phytosaurids, and crocodylomorphs are known throughout the Chinle Formation, although most remains are fragmentary. In the Cameron and Monitor Butte Members, metoposaurids are abundant and non-pseudopalatine phytosaurs are known, as is excellent material of the paracrocodylomorph Poposaurus; fragmentary specimens of the aetosaurs Calyptosuchus, Desmatosuchus, and indeterminate paratypothoracisins were probably also recovered from these beds. Osteichthyans, pseudopalatine phytosaurs, and the aetosaur Typothorax are especially abundant in the Kane Springs beds and Church Rock Member of Lisbon Valley, and Typothorax is also known from the Petrified Forest Member in Capitol Reef National Park. Procolophonids, doswelliids, and dinosaurs are known but extremely rare in the Chinle Formation of Utah. Body fossils and tracks of osteichthyans, therapsids, crocodylomorphs, and theropods are well known from the lowermost Wingate Sandstone and Moenave Formation, especially from the St. George Dinosaur Discovery Site at Johnson Farm.

2017 ◽  
Vol 4 ◽  
pp. 99-180 ◽  
Author(s):  
Jeffrey W. Martz ◽  
James I. Kirkland ◽  
Andrew R.C. Milner ◽  
William G. Parker ◽  
Vincent L. Santucci

The Chinle Formation and the lower part of the overlying Wingate Sandstone and Moenave Formation were deposited in fluvial, lacustrine, paludal, and eolian environments during the Norian and Rhaetian stages of the Late Triassic (~230 to 201.3 Ma), during which time the climate shifted from subtropical to increasingly arid. In southern Utah, the Shinarump Member was largely confined to pre-Chinle paleovalleys and usually overprinted by mottled strata. From southeastern to southwestern Utah, the lower members of the Chinle Formation (Cameron Member and correlative Monitor Butte Member) thicken dramatically whereas the upper members of the Chinle Formation (the Moss Back, Petrified Forest, Owl Rock, and Church Rock Members) become erosionally truncated; south of Moab, the Kane Springs beds are laterally correlative with the Owl Rock Member and uppermost Petrified Forest Member. Prior to the erosional truncation of the upper members, the Chinle Formation was probably thickest in a southeast to northwest trend between Petrified Forest National Park and the Zion National Park, and thinned to the northeast due to the lower Chinle Formation lensing out against the flanks of the Ancestral Rocky Mountains, where the thickness of the Chinle is largely controlled by syndepositional salt tectonism. The Gartra and Stanaker Members of the Ankareh Formation are poorly understood Chinle Formation correlatives north of the San Rafael Swell. Osteichthyan fish, metoposaurid temnospondyls, phytosaurids, and crocodylomorphs are known throughout the Chinle Formation, although most remains are fragmentary. In the Cameron and Monitor Butte Members, metoposaurids are abundant and non-pseudopalatine phytosaurs are known, as is excellent material of the paracrocodylomorph Poposaurus; fragmentary specimens of the aetosaurs Calyptosuchus, Desmatosuchus, and indeterminate paratypothoracisins were probably also recovered from these beds. Osteichthyans, pseudopalatine phytosaurs, and the aetosaur Typothorax are especially abundant in the Kane Springs beds and Church Rock Member of Lisbon Valley, and Typothorax is also known from the Petrified Forest Member in Capitol Reef National Park. Procolophonids, doswelliids, and dinosaurs are known but extremely rare in the Chinle Formation of Utah. Body fossils and tracks of osteichthyans, therapsids, crocodylomorphs, and theropods are well known from the lowermost Wingate Sandstone and Moenave Formation, especially from the St. George Dinosaur Discovery Site at Johnson Farm.


2016 ◽  
Author(s):  
William G Parker

Aetosaurs are some of the most common fossils collected from the Upper Triassic Chinle Formation of Arizona, especially at the Petrified Forest National Park. Four partial skeletons collected from the park from 2002 through 2009 represent the holotype and referred specimens of Scutarx deltatylus. These specimens include much of the carapace, as well as the vertebral column, and shoulder and pelvic girldles. A partial skull represents the first aetosaur skull recovered from Arizona since the 1930s. Scutarx deltatylus can be distinguished from closely related forms Calyptosuchus wellesi and Adamanasuchus eisenhardtae not only morphologically, but also stratigraphically. Thus, Scutarx deltatylus is potentially an index taxon for the upper part of the Adamanian biozone.


Geochronology ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 257-282 ◽  
Author(s):  
George Gehrels ◽  
Dominique Giesler ◽  
Paul Olsen ◽  
Dennis Kent ◽  
Adam Marsh ◽  
...  

Abstract. Uranium–lead (U–Pb) geochronology was conducted by laser ablation – inductively coupled plasma mass spectrometry (LA-ICPMS) on 7175 detrital zircon grains from 29 samples from the Coconino Sandstone, Moenkopi Formation, and Chinle Formation. These samples were recovered from ∼ 520 m of drill core that was acquired during the Colorado Plateau Coring Project (CPCP), located in Petrified Forest National Park (Arizona). A sample from the lower Permian Coconino Sandstone yields a broad distribution of Proterozoic and Paleozoic ages that are consistent with derivation from the Appalachian and Ouachita orogens, with little input from local basement or Ancestral Rocky Mountain sources. Four samples from the Holbrook Member of the Moenkopi Formation yield a different set of Precambrian and Paleozoic age groups, indicating derivation from the Ouachita orogen, the East Mexico arc, and the Permo-Triassic arc built along the Cordilleran margin. A total of 23 samples from the Chinle Formation contain variable proportions of Proterozoic and Paleozoic zircon grains but are dominated by Late Triassic grains. LA-ICPMS ages of these grains belong to five main groups that correspond to the Mesa Redondo Member, Blue Mesa Member and lower part of the Sonsela Member, upper part of the Sonsela Member, middle part of the Petrified Forest Member, and upper part of the Petrified Forest Member. The ages of pre-Triassic grains also correspond to these chronostratigraphic units and are interpreted to reflect varying contributions from the Appalachian orogen to the east, Ouachita orogen to the southeast, Precambrian basement exposed in the ancestral Mogollon Highlands to the south, East Mexico arc, and Permian–Triassic arc built along the southern Cordilleran margin. Triassic grains in each chronostratigraphic unit also have distinct U and thorium (Th) concentrations, which are interpreted to reflect temporal changes in the chemistry of arc magmatism. Comparison of our LA-ICPMS ages with available chemical abrasion thermal ionization mass spectrometry (CA-TIMS) ages and new magnetostratigraphic data provides new insights into the depositional history of the Chinle Formation, as well as methods utilized to determine depositional ages of fluvial strata. For parts of the Chinle Formation that are dominated by fine-grained clastic strata (e.g., mudstone and siltstone), such as the Blue Mesa Member and Petrified Forest Member, all three chronometers agree (to within ∼ 1 Myr), and robust depositional chronologies have been determined. In contrast, for stratigraphic intervals dominated by coarse-grained clastic strata (e.g., sandstone), such as most of the Sonsela Member, the three chronologic records disagree due to recycling of older zircon grains and variable dilution of syn-depositional-age grains. This results in LA-ICPMS ages that significantly predate deposition and CA-TIMS ages that range between the other two chronometers. These complications challenge attempts to establish a well-defined chronostratigraphic age model for the Chinle Formation.


2019 ◽  
Author(s):  
George Gehrels ◽  
Dominique Giesler ◽  
Paul Olsen ◽  
Dennis Kent ◽  
Adam Marsh ◽  
...  

Abstract. U-Pb geochronology was conducted by Laser Ablation-Inductively Couple Plasma Mass Spectrometry (LA-ICPMS) on detrital zircon grains from twenty-nine samples from the Coconino Sandstone, Moenkopi Formation, and Chinle Formation. These samples were recovered from ∼520 m of drill core that was acquired during the Colorado Plateau Coring Project (CPCP), located in Petrified Forest National Park (Arizona). A sample from the lower Permian Coconino Sandstone yields a broad distribution of Proterozoic and Paleozoic ages that are consistent with derivation from the Appalachian and Ouachita orogens, with little input from local basement or Ancestral Rocky Mountain sources. Four samples from the Holbrook Member of the Moenkopi Formation yield a different set of Precambrian and Paleozoic age groups, indicating derivation from the Ouachita orogen, the East Mexico Arc, and the Permo-Triassic arc built along the Cordilleran margin. Twenty-three samples from the Chinle Formation contain variable proportions of Proterozoic and Paleozoic zircon grains, but are dominated by Late Triassic grains. LA-ICPMS ages of these grains belong to five main groups that correspond to the Mesa Redondo Member, Blue Mesa Member and lower part of the Sonsela Member, upper part of the Sonsela Member, middle part of the Petrified Forest Member, and upper part of the Petrified Forest Member. The ages of pre-Triassic grains also correspond to these chronostratigraphic units, and are interpreted to reflect varying contributions from the Appalachian orogen to the east, Ouachita orogen to the southeast, Precambrian basement exposed in the Ancestral Mogollon Highlands to the south, East Mexico arc, and Permian-Triassic arc built along the southern Cordilleran margin. Triassic grains in each chronostratigraphic unit also have distinct U and Th concentrations, which are interpreted to reflect temporal changes in the chemistry of arc magmatism. Comparison of our LA-ICPMS ages with available CA-TIMS ages and new magnetostratigraphic data provides new insights into the depositional history of the Chinle Formation, as well as methods utilized to determine depositional ages of fluvial strata. For parts of the Chinle Formation that are dominated by fine-grained clastic strata (e.g. mudstone and siltstone), such as the Blue Mesa Member and Petrified Forest Member, all three chronometers agree (to within ∼1 m.y.), and robust depositional chronologies have been determined. In contrast, for stratigraphic intervals dominated by coarse-grained clastic strata (e.g., sandstone), such as most of the Sonsela Member, the three chronologic records disagree due to recycling of older zircon grains and variable dilution of syn-depositional-age grains. This results in LA-ICPMS ages that significantly pre-date deposition, and CA-TIMS ages that range between the other two chronometers. These complications challenge attempts to establish a well-defined chronostratigraphic age model for the Chinle Formation, and to evaluate possible connections among fundamental Late Triassic biotic and climatic changes, a red siliceous horizon encountered in the CPCP core, and the ∼215.5 Ma Manicouagan impact.


2016 ◽  
Author(s):  
William G Parker

Aetosaurs are some of the most common fossils collected from the Upper Triassic Chinle Formation of Arizona, especially at the Petrified Forest National Park. Four partial skeletons collected from the park from 2002 through 2009 represent the holotype and referred specimens of Scutarx deltatylus. These specimens include much of the carapace, as well as the vertebral column, and shoulder and pelvic girldles. A partial skull represents the first aetosaur skull recovered from Arizona since the 1930s. Scutarx deltatylus can be distinguished from closely related forms Calyptosuchus wellesi and Adamanasuchus eisenhardtae not only morphologically, but also stratigraphically. Thus, Scutarx deltatylus is potentially an index taxon for the upper part of the Adamanian biozone.


Sign in / Sign up

Export Citation Format

Share Document