ionization mass
Recently Published Documents


TOTAL DOCUMENTS

12683
(FIVE YEARS 1912)

H-INDEX

157
(FIVE YEARS 14)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Bouthaina Hasnaoui ◽  
Adama Zan Diarra ◽  
Jean-Michel Berenger ◽  
Hacène Medkour ◽  
Ahmed Benakhla ◽  
...  

AbstractMatrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has proved effective for the identification of many arthropods. A total of 432 termite specimens were collected in Mali, Cote d’Ivoire, Togo, Senegal, Switzerland and France. Morphologically, 22 species were identified, including Ancistrotermes cavithorax, Amitermes evuncifer, Cryptotermes brevis, Cubitermes orthognathus, Kalotermes flavicollis, Macrotermes bellicosus, Macrotermes herus, Macrotermes ivorensis, Macrotermes subhyalinus, Microcerotermes parvus, Microtermes sp., Odontotermes latericius, Procubitermes sjostedti, Promirotermes holmgreni, Reticulitermes grassei, Reticulitermes lucifugus, Reticulitermes santonensis, Trinervitermes geminatus, Trinervitermes occidentalis, Trinervitermes togoensis, Trinervitermes sp., Trinervitermes trinervoides and Trinervitermes trinervius. Analysis of MALDI-TOF MS spectra profiles from termites revealed that all were of high quality, with intra-species reproducibility and inter-species specificity. Blind testing of the spectra of 389 termites against our updated database with the spectra of 43 specimens of different termite species revealed that all were correctly identified with log score values (LSVs) ranging from 1.65 to 2.851, mean 2.290 ± 0.225, median 2.299, and 98.4% (383) had LSVs > 1.8. This study is the first on the use of MALDI-TOF for termite identification and shows its importance as a tool for arthropod taxonomy and reinforces the idea that MALDI-TOF MS is a promising tool in the field of entomology.


2022 ◽  
Vol 23 (2) ◽  
pp. 888
Author(s):  
Żaneta Arciszewska ◽  
Sofia Gama ◽  
Monika Kalinowska ◽  
Grzegorz Świderski ◽  
Renata Świsłocka ◽  
...  

Caffeic acid (CFA) is one of the various natural antioxidants and chemoprotective agents occurring in the human diet. In addition, its metal complexes play fundamental roles in biological systems. Nevertheless, research on the properties of CFA with lanthanide metals is very scarce, and little to no chemical or biological information is known about these particular systems. Most of their properties, including their biological activity and environmental impact, strictly depend on their structure, stability, and solution behaviour. In this work, a multi-analytical-technique approach was used to study these relationships for the Eu(III)/CFA complex. The synthesized metal complex was studied by FT-IR, FT-Raman, elemental, and thermal (TGA) analysis. In order to examine the chemical speciation of the Eu(III)/CFA system in an aqueous solution, several independent potentiometric and spectrophotometric UV-Vis titrations were performed at different M:L (metal:ligand) and pH ratios. The general molecular formula of the synthesized metal complex in the solid state was [Eu(CFA)3(H2O)3]∙2H2O (M:L ratio 1:3), while in aqueous solution the 1:1 species were observed at the optimum pH of 6 ≤ pH ≤ 10, ([Eu(CFA)] and [Eu(CFA)(OH)]−). These results were confirmed by 1H-NMR experiments and electrospray-ionization mass spectrometry (ESI-MS). To evaluate the interaction of Eu(III)/CFA and CFA alone with cell membranes, electrophoretic mobility assays were used. Various antioxidant tests have shown that Eu(III)/CFA exhibits lower antioxidant activity than the free CFA ligand. In addition, the antimicrobial properties of Eu(III)/CFA and CFA against Escherichia coli, Bacillus subtilis and Candida albicans were investigated by evaluation of the minimum inhibitory concentration (MIC). Eu(III)/CFA shows higher antibacterial activity against bacteria compared to CFA, which can be explained by the highly probable increased lipophilicity of the Eu(III) complex.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Jesi Lee ◽  
Tobias Kind ◽  
Dean Joseph Tantillo ◽  
Lee-Ping Wang ◽  
Oliver Fiehn

Mass spectrometry is the most commonly used method for compound annotation in metabolomics. However, most mass spectra in untargeted assays cannot be annotated with specific compound structures because reference mass spectral libraries are far smaller than the complement of known molecules. Theoretically predicted mass spectra might be used as a substitute for experimental spectra especially for compounds that are not commercially available. For example, the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) method can predict 70 eV electron ionization mass spectra from any given input molecular structure. In this work, we investigated the accuracy of QCEIMS predictions of electron ionization (EI) mass spectra for 80 purine and pyrimidine derivatives in comparison to experimental data in the NIST 17 database. Similarity scores between every pair of predicted and experimental spectra revealed that 45% of the compounds were found as the correct top hit when QCEIMS predicted spectra were matched against the NIST17 library of >267,000 EI spectra, and 74% of the compounds were found within the top 10 hits. We then investigated the impact of matching, missing, and additional fragment ions in predicted EI mass spectra versus ion abundances in MS similarity scores. We further include detailed studies of fragmentation pathways such as retro Diels–Alder reactions to predict neutral losses of (iso)cyanic acid, hydrogen cyanide, or cyanamide in the mass spectra of purines and pyrimidines. We describe how trends in prediction accuracy correlate with the chemistry of the input compounds to better understand how mechanisms of QCEIMS predictions could be improved in future developments. We conclude that QCEIMS is useful for generating large-scale predicted mass spectral libraries for identification of compounds that are absent from experimental libraries and that are not commercially available.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Marek Golian ◽  
Tanja Bien ◽  
Sebastian Schmelzle ◽  
Margy Alejandra Esparza-Mora ◽  
Dino Peter McMahon ◽  
...  

Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.


Sign in / Sign up

Export Citation Format

Share Document