scholarly journals A polynomially solvable case of a single machine scheduling problem when the maximal job processing time is a constant

2012 ◽  
Vol 45 (6) ◽  
pp. 117-122
Author(s):  
Nodari Vakhania ◽  
Frank Werner
2016 ◽  
Vol 33 (05) ◽  
pp. 1650034 ◽  
Author(s):  
Zhenyou Wang ◽  
Cai-Min Wei ◽  
Yu-Bin Wu

This paper deals with the single machine scheduling problem with deteriorating jobs in which there are two distinct families of jobs (i.e., two-agent) pursuing different objectives. In this model the processing time of a job is defined as a function that is proportional to a linear function of its stating time. For the following three scheduling criteria: minimizing the makespan, minimizing the total weighted completion time, and minimizing the maximum lateness, we show that some basic versions of the problem are polynomially solvable. We also establish the conditions under which the problem is computationally hard.


2013 ◽  
Vol 787 ◽  
pp. 1020-1024
Author(s):  
Shu Xia Zhang ◽  
Yu Zhong Zhang

In this paper, we address the single machine scheduling problem with discretely compressible processing times, where processing any job with a compressed processing time incurs a corresponding compression cost. We consider the following problem: scheduling with discretely compressible processing times to minimize makespan with the constraint of total compression cost. Jobs may have different release times. We design a pseudo-polynomial time algorithm by approach of dynamic programming and an FPTAS.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Pengfei Xue ◽  
Yulin Zhang

We consider a single-machine scheduling problem with upper bounded actual processing time and upper bounded maintenance time under deteriorating effect. The actual processing time of a job is a position-dependent power function. If the actual processing time of a job exceeds the upper bound, tardiness penalty of the job should be paid. And if the maintenance time exceeds the corresponding upper bound, tardiness penalty of the maintenance should also be paid. The maintenance duration studied in the paper is a position-dependent exponential function. The objective is to find jointly the optimal maintenance frequency and the optimal job sequence to minimize the total cost, which is a linear function of the makespan and the total tardiness. We show that the studied scheduling problem can be transformed as a classic assignment problem to solve. There is also shown that a special case of the scheduling problem can be optimally solved by a lower order algorithm.


2015 ◽  
Vol 775 ◽  
pp. 449-452
Author(s):  
Ji Bo Wang ◽  
Chou Jung Hsu

This paper studies a single machine scheduling problem with rejection. Each job has a variable processing time and a rejection penalty. The objective function is to minimize the sum of the makespan of the accepted jobs and the total rejection penalty of the rejected jobs. We show that the problem can be solved in polynomial time.


2009 ◽  
Vol 2009 ◽  
pp. 1-8
Author(s):  
Xingong Zhang ◽  
Guangle Yan

Recently, learning scheduling problems have received increasing attention. However, the majority of the research assume that the actual job processing time is a function of its position. This paper deals with the single-machine scheduling problem with a sum-of-processing-time-based learning effect. By the effect of sum-of-processing-time-based learning, we mean that the processing time of a job is defined by total normal processing time of jobs in front of it in the sequence. We show that the single-machine makespan problem remains polynomially solvable under the proposed model. We show that the total completion time minimization problem for a≥1 remains polynomially solvable under the proposed model. For the case of 0<a<1, we show that an optimal schedule of the total completion time minimization problem is V-shaped with respect to normal job processing times.


Sign in / Sign up

Export Citation Format

Share Document