Registration of ‘Endeavor’ Winter Barley

2009 ◽  
Vol 3 (2) ◽  
pp. 124-126 ◽  
Author(s):  
D. E. Obert ◽  
C. P. Evans ◽  
J. M. Windes ◽  
D. M. Wesenberg ◽  
S. E. Ulrich ◽  
...  
Keyword(s):  
Crop Science ◽  
1989 ◽  
Vol 29 (4) ◽  
pp. 1086-1086 ◽  
Author(s):  
M. E. Sorrells ◽  
N. F. Jensen
Keyword(s):  

Crop Science ◽  
1993 ◽  
Vol 33 (1) ◽  
pp. 204-205 ◽  
Author(s):  
J. R. Lawless ◽  
T. J. Martin ◽  
M. D. Witt ◽  
R. G. Sears ◽  
V. A. Schaffer
Keyword(s):  

2017 ◽  
Vol 1 (65) ◽  
pp. 90-100
Author(s):  
Natalia Repko ◽  
◽  
Kseniya Sukhinina ◽  
Keyword(s):  

2019 ◽  
Vol 1 (79) ◽  
pp. 122-126
Author(s):  
Roman Kravchenko ◽  
◽  
Anastasia Novikova ◽  
Yury Osipov ◽  
◽  
...  
Keyword(s):  

2008 ◽  
Vol 43 (No. 3) ◽  
pp. 87-96 ◽  
Author(s):  
A. Dreiseitl

The results of evaluation of powdery mildew resistance in winter barley varieties in 285 Czech Official Trials conducted at 20 locations were analysed. Over the period, the number of varieties tested per year increased from four to seven in 1976−1985 to 53−61 in 2002−2005. To assess the resistance of varieties, only trials with sufficient disease severity were used. In 1976−2000, six varieties (1.7% of the varieties tested in the given years) ranked among resistant (average resistance of a variety in a year > 7.5) including NR-468 possessing the gene <i>Mla13</i>, KM-2099 with <i>mlo</i> and Marinka with the genes <i>Mla7</i>, <i>MlaMu2</i>. In 2001−2005, already 33 varieties (16.9%) ranked among resistant, of which Traminer possessing the genes <i>Ml(St)</i> and <i>Ml(IM9 </i> dominated. The proportion of susceptible varieties (average resistance ≤ 5.5) did not change in the two mentioned periods. Two-rowed varieties began to be tested as late as in 1990 (the first variety was Danilo), however, no difference was found in the resistance of two- and six-rowed varieties. Using an example of two pairs of varieties (Dura-Miraj and Marinka-Tiffany) with identical genes for specific resistance but with different resistance in the field, the efficiency of non-specific resistance is discussed. The resistance of domestic and foreign varieties was similar in 1994−2000; however, in 2001−2005 the difference was 0.75 point to disadvantage of domestic ones.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 512
Author(s):  
Alemayehu Worku ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

The objective of this study was to evaluate the aroma profile, microbial and chemical quality of winter cereals (triticale, oats, barley and wheat) and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four commercial mixtures (mixture A (40% of two cultivars of winter triticale + 30% of two cultivars of winter oats + 20% of winter barley + 10% of winter wheat), mixture B (50% of two cultivars of winter triticale + 40% of winter barley + 10% of winter wheat), mixture C (55% of three types of Italian ryegrass + 45% of two cultivars of winter oat), mixture D (40% of three types of Italian ryegrass + 30% of two cultivars of winter oat + 15% of two cultivars of winter triticale + 10% of winter barley + 5% of winter wheat)) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Mixture C had higher (p < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. In general, the electronic nose (EN) results revealed that the Italian ryegrass and winter cereal mixtures (mixture D) had better aroma profile as compared to winter cereal mixtures (mixture A and B). However, the cereal mixtures (mixture A and B) had better aroma quality than mixture C silage. Otherwise, the EN technology is suitable in finding off odor compounds of ensiled forages.


Sign in / Sign up

Export Citation Format

Share Document