scholarly journals Evaluation of post-earthquake loading capacity of steel reinforced retaining wall by displacement and/or loading controlled pullout test

2016 ◽  
Vol 2 (64) ◽  
pp. 2186-2191
Author(s):  
Motoyuki Suzuki ◽  
Ryohei Asada ◽  
Yoshinori Otani ◽  
Naoki Shimura
2012 ◽  
Vol 268-270 ◽  
pp. 702-705
Author(s):  
Jia Liang

FEM is use for the mechanical analysis of reinforced retaining wall under earthquake loading. The main results are as following. The displacement and axial force increased with the increased seismic intensity. The displacement and axial force decreased with the increased the length of bar strip. The displacement and axial force decreased with the decreased the spacing of bar strip. The displacement and axial force decreased with the increased physical mechanics parameters of filling. Seismic response was similar under bilateral seismic loading and horizontal seismic loading, seismic response was slightly larger under bilateral seismic loading.


2018 ◽  
Vol 46 (3) ◽  
pp. 284-296 ◽  
Author(s):  
Fei Song ◽  
Huabei Liu ◽  
Liqiu Ma ◽  
Hongbing Hu

Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 486
Author(s):  
Xiaoyu Guan ◽  
Gopal S. P. Madabhushi

In an urban environment, it is often necessary to locate structures close to existing retaining walls due to congestion in space. When such structures are in seismically active zones, the dynamic loading attracted by the retaining wall can increase. In a novel approach taken in this paper, finite element-based numerical analyses are presented for the case of a flexible, cantilever sheet pile wall with and without a structure on the backfill side. This enables a direct comparison of the influence exerted by the structure on the dynamic behaviour of the retaining wall. In this paper, the initial static bending moments and horizontal stresses prior to application of any earthquake loading are compared to Coulomb’s theory. The dynamic behaviour of the retaining wall is compared in terms of wall-top accelerations and bending moments for different earthquake loadings. The dynamic structural rotation induced by the differential settlements of the foundations is presented. The accelerations generated in the soil body are considered in three zones, i.e., the free field, the active and the passive zones. The differences caused by the presence of the structure are highlighted. Finally, the distribution of horizontal soil pressures generated by the earthquake loading behind the wall, and in front of the wall is compared to the traditional Mononobe-Okabe type analytical solutions.


2020 ◽  
Vol 20 (4) ◽  
pp. 04020017 ◽  
Author(s):  
Lihua Li ◽  
Junchao Yang ◽  
Henglin Xiao ◽  
Lei Zhang ◽  
Zhi Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document