vehicle load
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 124)

H-INDEX

16
(FIVE YEARS 3)

This paper proposed a Transformer less Hybrid Active Filter that upgrade the power quality in single-stage frameworks with steady renewable Photo Voltaic. It strengthens basic loads and carrying on as high-consonant impedance that does not below the critical loads. Manages energy management and power quality issues identified with electric transportation and concentrate on enhancing the electric vehicle load connected to grid. The control technique was intended to anticipation of current harmonic distortions with the nonlinear loads to control the flow of utility with no standard massive and expensive transformer. Power factor alongside AC side will likewise kept up to some esteem and furthermore dispense with the voltage distortions at the Common coupling point.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Dengzhi Peng ◽  
Kekui Fang ◽  
Jianjie Kuang ◽  
Mohamed A. Hassan ◽  
Gangfeng Tan

Lateral stability is quite essential for the vehicle. For the vehicle with an articulated steering system, the vehicle load and steering system performance is quite different from the passenger car with the Ackman steering system. To investigate the influence of the tire characteristics and vehicle parameters on lateral stability, a single-track dynamic model is established based on the vehicle dynamic theory. The accuracy of the built model is validated by the field test result. The investigated parameters include the tire cornering stiffness, vehicle load, wheelbase, and speed. Based on the snaking steering maneuver, the lateral stability criteria including the yaw rate, vehicle sideslip angle, tire sideslip angle, and lateral force are calculated and compared. The sensitivity analysis of the tire and vehicle parameters on the lateral stability indicators is initiated. The results demonstrated that the parameters that affect the lateral vehicle stability the most are the load on the rear part and the tire cornering stiffness. The findings also lay a foundation for the optimization of the vehicle’s lateral stability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lin Meng ◽  
Yang Gao ◽  
Yangyang Liu ◽  
Shengfang Lu

Purpose As a short take-off and landing aircraft, FanWing has the capability of being driven under power a short distance from a parking space to the take-off area. The purpose of this paper is to design the take-off control system of FanWing and study the factors that influence the short take-off performance under control. Design/methodology/approach The force analysis of FanWing is studied in the take-off phase. Two take-off control methods are researched, and several factors that influence the short take-off performance are studied under control. Findings The elevator and fan wing control systems are designed. Although the vehicle load increases under the fan wing control, the fan wing control is not a recommended practice in the take-off phase for its sensitivity to the pitch angle command. The additional pitch-down moment has a significant influence on the control system and the short take-off performance that the barycenter variation of FanWing should be considered carefully. Practical implications The presented efforts provide a reference for the location of the center of gravity in designing FanWing. The traditional elevator control is more recommended than the fan wing control in the take-off phase. Originality/value This paper offers a valuable reference on the control system design of FanWing. It also proves that there is an additional pith-down moment that needs to be paid close attention to. Four factors that influence the short take-off performance are compared under control.


2021 ◽  
Vol 13 (24) ◽  
pp. 13666
Author(s):  
Binqiang Guo ◽  
Renzhi Wang ◽  
Chen Lu ◽  
Weijian Shi ◽  
Qingfei Gao

Assembly construction is the main feature of industrialized bridges, and π-shaped section steel–concrete composites that are continuously rigid have been widely used in engineering fields in recent years; however, their dynamic responses and corresponding impact coefficients in positive and negative moment regions need to be further studied. First, considering the interface slip model, we established a finite element model for the π-shaped continuous region section of the steel–concrete composite on the Sutai Expressway Tongfu No. 3 viaduct. Second, the bridge deck unevenness parameters were generated by preparing a MATLAB program with random calculations and were added to the bridge deck as the excitation load along with the vehicle load. Such parameters are defined on the basis of considering the vertical degrees of freedom of the four wheels and of one vehicle rigid body. Finally, we analyzed the displacement or stress impact coefficients as the dynamic response index of the bridge by adjusting the vehicle travel speeds, vehicle weights, interface slip stiffness values, and deck unevenness values. The results show that the change in vehicle travel speed and the change in vehicle load weight have some influence on the change in the dynamic effect of the combined beam, but this change is not significant. Moreover, the unevenness and interface slip strength changes have a large effect on the dynamic effect of the combination beam, which can significantly change the impact coefficient of the combination beam bridge. The worse the unevenness of the bridge deck is, the lower the grade of interface slip for the steel–concrete composite bridges and the higher the impact coefficient. We calculated the recommended impact coefficient values of the steel–concrete composite bridge based on the specifications for various countries, and they range from 1.16 to 1.4; such values are similar to the finite element calculation results.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1516
Author(s):  
Baoyang Yu ◽  
Zongguang Sun ◽  
Lin Qi

Dust, sediment, and stone chips often block the rainwater-infiltration paths of permeable pavements, which, in conjunction with vehicle load, reduces drainage capacity. To restore this capacity, a reasonable maintenance time and suitable maintenance measures must be determined. Therefore, we investigated the void attenuation and decline in drainage capacity of permeable asphalt pavements under the combined action of dust blockage and vehicle load. First, the water seepage coefficient decay and the decay rate under blocking and compaction were determined via clogging and compaction experiments. Second, experimental data were incorporated into an entropy–analytic hierarchy process analysis model, with the gross domestic product ratio, wind scale, and maximum five-year rainfall for the area. Finally, three test roads were studied as the weight to rank the maintenance urgency and predict the maintenance timing for each road under different rainfall conditions. The results demonstrate that the drainage capacity of permeable pavements obeys the parabolic exponential attenuation law. From the findings regarding road water storage capacity, the latest pavement maintenance time at different rainfall levels were obtained. This predicted maintenance time enables better decisions than regular time on code, which is the effect of drainage caused by multiple factors.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110514
Author(s):  
Guangliang Liao ◽  
Wei Zhang ◽  
Chuan Cai

This paper proposes a novel state estimation based permanent magnet synchronous motor (PMSM) control method for electric vehicle (EV) driving. Firstly, a state feedback decoupling control with disturbance feed-forward (SFDCDF) is described. As motor angular speed and rotary angle are key information for the proposed control algorithm and park’s transformation, a novel observer based angular speed estimator (OBASE) is proposed for angular speed estimation. Moreover, an extended Kalman filter (EKF) based rotary angle estimator (EBRAE) is used for rotary angle estimation with information of the estimated angular speed. The convergence of angular speed estimation is proven through Lyapunov stability theory. Simulation results also indicate that the proposed algorithms can control PMSM torque, current, and angular speed to accurately follow reference values without severe fluctuation. In addition, in order to provide SFDCDF with load torque information, the OBASE is slightly modified to work as a vehicle load estimator (VLE) so PMSM responds more rapidly and speed fluctuates more slightly when the load suddenly changes. Then a series of hardware in the loop (HIL) simulations are carried out. Results indicate that the proposed control strategy can precisely estimate PMSM’s angular speed and rotor angle. Also, it can improve the driving performance of PMSM used on EVs.


2021 ◽  
pp. 103-107
Author(s):  
P. Mikhailenko ◽  
M. Arraigada ◽  
Z. Piao ◽  
L.D. Poulikakos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document