Splitting and jump inversion in the Turing degrees

Computability ◽  
2018 ◽  
Vol 7 (2-3) ◽  
pp. 133-142
Author(s):  
S. Barry Cooper ◽  
Angsheng Li ◽  
Mingji Xia
2012 ◽  
Vol 12 (01) ◽  
pp. 1250005 ◽  
Author(s):  
MINGZHONG CAI ◽  
RICHARD A. SHORE ◽  
THEODORE A. SLAMAN

We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].


2018 ◽  
Vol 28 (7) ◽  
pp. 1499-1522
Author(s):  
W Calvert ◽  
A Frolov ◽  
V Harizanov ◽  
J Knight ◽  
C McCoy ◽  
...  
Keyword(s):  

2018 ◽  
Vol 24 (2) ◽  
pp. 165-174
Author(s):  
BJØRN KJOS-HANSSEN

AbstractIs there a nontrivial automorphism of the Turing degrees? It is a major open problem of computability theory. Past results have limited how nontrivial automorphisms could possibly be. Here we consider instead how an automorphism might be induced by a function on reals, or even by a function on integers. We show that a permutation of ω cannot induce any nontrivial automorphism of the Turing degrees of members of 2ω, and in fact any permutation that induces the trivial automorphism must be computable.A main idea of the proof is to consider the members of 2ω to be probabilities, and use statistics: from random outcomes from a distribution we can compute that distribution, but not much more.


2000 ◽  
Vol 65 (3) ◽  
pp. 1193-1203 ◽  
Author(s):  
P.D. Welch

AbstractWe characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down ζ, the least ordinal not the length of any eventual output of an Infinite Time Turing machine (halting or otherwise); using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that the natural ordinals associated with the jump operator satisfy a Spector criterion, and correspond to the Lζ-stables. It also implies that the machines devised are “Σ2 Complete” amongst all such other possible machines. It is shown that least upper bounds of an “eventual jump” hierarchy exist on an initial segment.


Author(s):  
Harold Hodes

A reducibility is a relation of comparative computational complexity (which can be made precise in various non-equivalent ways) between mathematical objects of appropriate sorts. Much of recursion theory concerns such relations, initially between sets of natural numbers (in so-called classical recursion theory), but later between sets of other sorts (in so-called generalized recursion theory). This article considers only the classical setting. Also Turing first defined such a relation, now called Turing- (or just T-) reducibility; probably most logicians regard it as the most important such relation. Turing- (or T-) degrees are the units of computational complexity when comparative complexity is taken to be T-reducibility.


Computability ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 105-134
Author(s):  
Wesley Calvert ◽  
Valentina Harizanov ◽  
Alexandra Shlapentokh

Sign in / Sign up

Export Citation Format

Share Document