nontrivial automorphism
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2019 ◽  
Vol 101 (2) ◽  
pp. 177-185
Author(s):  
MICHAEL J. GILL ◽  
IAN M. WANLESS

We report the results of a computer enumeration that found that there are 3155 perfect 1-factorisations (P1Fs) of the complete graph $K_{16}$. Of these, 89 have a nontrivial automorphism group (correcting an earlier claim of 88 by Meszka and Rosa [‘Perfect 1-factorisations of $K_{16}$ with nontrivial automorphism group’, J. Combin. Math. Combin. Comput. 47 (2003), 97–111]). We also (i) describe a new invariant which distinguishes between the P1Fs of $K_{16}$, (ii) observe that the new P1Fs produce no atomic Latin squares of order 15 and (iii) record P1Fs for a number of large orders that exceed prime powers by one.



2019 ◽  
Vol 48 (1) ◽  
pp. 307-330
Author(s):  
Andrea Marinatto


2018 ◽  
Vol 239 ◽  
pp. 110-122
Author(s):  
KEIJI OGUISO

For a hyper-Kähler manifold deformation equivalent to a generalized Kummer manifold, we prove that the action of the automorphism group on the total Betti cohomology group is faithful. This is a sort of generalization of a work of Beauville and a more recent work of Boissière, Nieper-Wisskirchen, and Sarti, concerning the action of the automorphism group of a generalized Kummer manifold on the second cohomology group.



2018 ◽  
Vol 20 (07) ◽  
pp. 1750084 ◽  
Author(s):  
Wenfei Liu

Let [Formula: see text] be a minimal smooth projective surface of general type with irregularity [Formula: see text]. We show that, if [Formula: see text] has a nontrivial holomorphic automorphism acting trivially on the cohomology with rational coefficients, then it is a surface isogenous to a product. As a consequence of this geometric characterization, one infers that no nontrivial automorphism of surfaces of general type with [Formula: see text] (which are not necessarily minimal) can be homotopic to the identity. In particular, such surfaces are rigidified in the sense of Fabrizio Catanese.



2018 ◽  
Vol 24 (2) ◽  
pp. 165-174
Author(s):  
BJØRN KJOS-HANSSEN

AbstractIs there a nontrivial automorphism of the Turing degrees? It is a major open problem of computability theory. Past results have limited how nontrivial automorphisms could possibly be. Here we consider instead how an automorphism might be induced by a function on reals, or even by a function on integers. We show that a permutation of ω cannot induce any nontrivial automorphism of the Turing degrees of members of 2ω, and in fact any permutation that induces the trivial automorphism must be computable.A main idea of the proof is to consider the members of 2ω to be probabilities, and use statistics: from random outcomes from a distribution we can compute that distribution, but not much more.



2016 ◽  
Vol 08 (02) ◽  
pp. 1650036 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

Some results are generalized on linear codes over [Formula: see text] in [15] to the ring [Formula: see text], where [Formula: see text] is an odd prime number. The Gray images of cyclic and quasi-cyclic codes over [Formula: see text] are obtained. The parameters of quantum error correcting codes are obtained from negacyclic codes over [Formula: see text]. A nontrivial automorphism [Formula: see text] on the ring [Formula: see text] is determined. By using this, the skew cyclic, skew quasi-cyclic, skew constacyclic codes over [Formula: see text] are introduced. The number of distinct skew cyclic codes over [Formula: see text] is given. The Gray images of skew codes over [Formula: see text] are obtained. The quasi-constacyclic and skew quasi-constacyclic codes over [Formula: see text] are introduced. MacWilliams identities of linear codes over [Formula: see text] are given.



2016 ◽  
Vol 15 (04) ◽  
pp. 1650058 ◽  
Author(s):  
M. Aaghabali ◽  
M. Amiri ◽  
M. Ariannejad ◽  
A. Madadi

Cartan–Brauer–Hua Theorem is a well-known theorem which states that if [Formula: see text] is a subdivision ring of a division ring [Formula: see text] which is invariant under all elements of [Formula: see text] or [Formula: see text] for all [Formula: see text], then either [Formula: see text] or [Formula: see text] is contained in the center of [Formula: see text]. The invariance idea of this basic theorem is the main notion of this paper. We prove that if [Formula: see text] is a division ring with involution [Formula: see text] and [Formula: see text] is a subspace of [Formula: see text] which is invariant under all symmetric elements of [Formula: see text], then either [Formula: see text] is contained in the center of [Formula: see text] or is a Lie ideal of [Formula: see text]. Also, we show that if [Formula: see text] is a self-invariant subfield of a non-commutative division ring [Formula: see text] with a nontrivial automorphism, then [Formula: see text] contains at least one non-central proper subfield of [Formula: see text].



10.37236/3182 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Antoni Lozano

We provide upper bounds for the determining number and the metric dimension of tournaments. A set of vertices $S \subseteq V(T)$ is a determining set for a tournament $T$ if every nontrivial automorphism of $T$ moves at least one vertex of $S$, while $S$ is a resolving set for $T$ if every two distinct vertices in $T$ have different distances to some vertex in $S$. We show that the minimum size of a determining set for an order $n$ tournament (its determining number) is bounded by $\lfloor n/3 \rfloor$, while the minimum size of a resolving set for an order $n$ strong tournament (its metric dimension) is bounded by $\lfloor n/2 \rfloor$. Both bounds are optimal.



10.37236/3066 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Che ◽  
Karen L. Collins

A labeling $f: V(G) \rightarrow \{1, 2, \ldots, d\}$ of the vertex set of a graph $G$ is said to be proper $d$-distinguishing if it is a proper coloring of $G$ and any nontrivial automorphism of $G$ maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of $G$, denoted by $\chi_D(G)$, is the minimum $d$ such that $G$ has a proper $d$-distinguishing labeling. Let $\chi(G)$ be the chromatic number of $G$ and $D(G)$ be the distinguishing number of $G$. Clearly, $\chi_D(G) \ge \chi(G)$ and $\chi_D(G) \ge D(G)$. Collins, Hovey and Trenk have given a tight upper bound on $\chi_D(G)-\chi(G)$ in terms of the order of the automorphism group of $G$, improved when the automorphism group of $G$ is a finite abelian group. The Kneser graph $K(n,r)$ is a graph whose vertices are the $r$-subsets of an $n$ element set, and two vertices of $K(n,r)$ are adjacent if their corresponding two $r$-subsets are disjoint. In this paper, we provide a class of graphs $G$, namely Kneser graphs $K(n,r)$, whose automorphism group is the symmetric group, $S_n$, such that $\chi_D(G) - \chi(G) \le 1$. In particular, we prove that $\chi_D(K(n,2))=\chi(K(n,2))+1$ for $n\ge 5$. In addition, we show that $\chi_D(K(n,r))=\chi(K(n,r))$ for $n \ge 2r+1$ and $r\ge 3$.



Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1205-1218 ◽  
Author(s):  
Sang-Eon Han

The study of digital covering transformation groups (or automorphism groups, discrete deck transformation groups) plays an important role in the classification of digital spaces (or digital images). In particular, the research into transitive or nontransitive actions of automorphism groups of digital covering spaces is one of the most important issues in digital covering and digital homotopy theory. The paper deals with the problem: Is there a digital covering space which is not ultra regular and has an automorphism group which is not trivial? To solve the problem, let us consider a digital wedge of two simple closed ki-curves with a compatible adjacency, i ?{1,2}, denoted by (X, k). Since the digital wedge (X, k) has both infinite or finite fold digital covering spaces, in the present paper some of these infinite fold digital covering spaces were found not to be ultra regular and further, their automorphism groups are not trivial, which answers the problem posed above. These findings can be substantially used in classifying digital covering spaces and digital images so that the paper improves on the research in Section 4 of [3] (compare Figure 2 of the present paper with Figure 2 of [3]), which corrects an error that appears in the Boxer and Karaca's paper [3] (see the points (0,0), (0,8), (6, -1) and (6,7) in Figure 2 of [3]).



Sign in / Sign up

Export Citation Format

Share Document