Free-Energy Barriers in Spin Glasses from Multi-Overlap Simulations1

2002 ◽  
Vol 2 (1-2) ◽  
pp. 125-134
Author(s):  
Wolfhard Janke ◽  
Bernd A. Berg ◽  
Alain Billoire
2018 ◽  
Vol 115 (20) ◽  
pp. 5129-5134 ◽  
Author(s):  
Andrea Maiorano ◽  
Giorgio Parisi

We study numerically various properties of the free energy barriers in the Edwards–Anderson model of spin glasses in the low-temperature region in both three and four spatial dimensions. In particular, we investigated the dependence of height of free energy barriers on system size and on the distance between the initial and final states (i.e., the overlap distance). A related quantity is the distribution of large local fluctuations of the overlap in large 3D samples at equilibrium. Our results for both quantities (barriers and large deviations) are in agreement with the prediction obtained in the framework of mean-field theory. In addition, our result supports Dlc=2.5 as the lower critical dimension of the model.


10.2741/3104 ◽  
2008 ◽  
Vol Volume (13) ◽  
pp. 5614 ◽  
Author(s):  
Mookyung Cheon
Keyword(s):  

1981 ◽  
Vol 85 (5) ◽  
pp. 301-302
Author(s):  
V.A. Moskalenko ◽  
L.A. Dogotar ◽  
M.I. Vladimir
Keyword(s):  

2012 ◽  
Vol 85 (20) ◽  
Author(s):  
Kenichi Koizumi ◽  
Mauro Boero ◽  
Yasuteru Shigeta ◽  
Atsushi Oshiyama

2014 ◽  
Vol 16 (45) ◽  
pp. 24913-24919 ◽  
Author(s):  
M. A. Gonzalez ◽  
E. Sanz ◽  
C. McBride ◽  
J. L. F. Abascal ◽  
C. Vega ◽  
...  

2018 ◽  
Vol 148 (18) ◽  
pp. 184104 ◽  
Author(s):  
Abhishek K. Sharma ◽  
Fernando A. Escobedo

2021 ◽  
Author(s):  
Yunjian Li ◽  
Hui Pan ◽  
Xing Ming ◽  
Zongjin Li

Abstract Dissolution of mineral in water is ubiquitous in nature and industry, especially for the calcium silicate species. However, the behavior of such a complex chemical reaction is still unclear at atomic level. Here, we show that the ab initio molecular dynamics and metadynamics simulations enable quantitative analyses of reaction pathways, and the thermodynamics and kinetics of calcium ion dissolution from the tricalcium silicate (Ca3SiO5) surface. The calcium sites with different coordination environment leads to different reaction pathways and free energy barriers. The low free energy barriers lead to that the detachment of calcium ions is a ligand exchange and auto-catalytic process. Moreover, the water adsorption, proton exchange and diffusion of water into the surface layer accelerate the leaching of calcium ions from the surface step by step. The discovery in this work thus would be a landmark for revealing the mechanism of cement hydration.


Sign in / Sign up

Export Citation Format

Share Document