A new framework for analysis of laterally loaded piles

2013 ◽  
Vol 1 (1) ◽  
pp. 53-67 ◽  
Author(s):  
Dipanjan Basu ◽  
Rodrigo Salgado ◽  
Mônica Prezzi

A new analysis framework is presented for calculation of the response of laterally loaded piles in multi-layered, heterogeneous elastic soil. The governing differential equations for the pile deflections in different soil layers are obtained using the principle of minimum potential energy after assuming a rational soil displacement field. Solutions for the pile deflection are obtained analytically, while those for the soil displacements are obtained using the finite difference method. The input parameters needed for the analysis are the pile geometry, soil profile and the elastic constants of the soil and pile. The method produces results with accuracy comparable to that of a three-dimensional finite element analysis but requires much less computation time. The analysis can take into account the spatial variation of soil properties along vertical, radial and tangential directions.

2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document