distribution patterns
Recently Published Documents


TOTAL DOCUMENTS

6758
(FIVE YEARS 1871)

H-INDEX

97
(FIVE YEARS 12)

2022 ◽  
Vol 146 ◽  
pp. 417-425
Author(s):  
Moleseng Claude Moshobane ◽  
Bester Tawona Mudereri ◽  
Mukundi Mukundamago ◽  
Tavengwa Chitata

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 73
Author(s):  
Xinyi Hao ◽  
Bolei Jiao ◽  
Yunlei Wang ◽  
Boxing Shang ◽  
Yan Xu

Grapevine (Vitis spp.) is globally one of the most economically important fruit crops. China is the largest grapevine-growing country of the world and Shaanxi province is one of the major grapevine-growing provinces in the country. A survey of GLRaV-3 found it widespread, with 57–100% infection frequencies, in both wine and table grapevine cultivars of three grapevine-growing regions of Shaanxi province. The virus infection frequencies varied with cultivars and regions. In order to obtain the full genomic length of a new GLRaV-3 isolate, GLRaV-3-Sau (accession number MK988555), was sequenced. This isolate has a genome of 18026 nucleotides, and 14 open reading frames (ORFs). The full-genome of the isolate GLRaV-3-Sau shared 85.88% nucleotide identity to GLRaV-3-LN, another isolate found in China. Coat protein (CP) genes of GLRaV-3 isolates were identical (99%) to the Vitis vinifera isolate (accession number HQ185608.1) from the USA. Immunohistochemistry for virus localization found that distribution patterns were similar in red-berried cultivar ‘Cabernet Sauvignon’ and white-berried cultivar ‘Chardonnay’, and GLRaV-3 is restricted in phloem tissue of vascular bundles. Virus transmission by micrografting found virus transmission efficiency was higher in ‘Chardonnay’ and ‘Thompson Seedless’ than in ‘Hunan-1’, indicating that ‘Hunan-1’ was less sensitive to GLRaV-3. As far as we know, these are the most comprehensive comparisons on the genome and CP genes of GLRaV-3 worldwide and the first to have found that the grapevine ‘Hunan-1’ is less susceptible to GLRaV-3.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 128
Author(s):  
Zhonggen Li ◽  
Yiming Huang ◽  
Xinyu Li ◽  
Guan Wang ◽  
Qingfeng Wang ◽  
...  

Atmospheric emission of heavy metals from different anthropogenic sources is a great concern to human beings due to their toxicities. In order to disclose the emission levels and the distribution patterns of zinc (Zn) in the modern cement industry with respect to its low boiling point (~900 °C) comparing to the high-temperature (1450 °C) clinker production process, solid samples representing the input and output flow of Zn during the entire production process in two preheater–precalciner cement plants (CPs) were collected and analyzed. For the first time, it was found that the behaviour of Zn inside different precalciner CPs was similar despite a huge difference in the Zn inputs to the CPs; namely, almost all the Zn input was output in clinker, which was then mixed with different additives and retarder to make cement products. The high-temperature clinkerisation process would incorporate Zn into the aluminosilicate of clinker. As a result, there was no enrichment of Zn during clinker production and the atmospheric emission factor was relatively low at 0.002%, or 1.28–9.39 mg Zn·t−1 clinker. Our result for the atmospheric Zn emissions from CPs was much lower than most previous reports, implying the CPs were not a crucial Zn emission source. However, the higher load of Zn in some raw/alternative materials—like nonferrous smelting slag with a Zn content of ~2%—could greatly increase the content of Zn in clinker and cement products. Therefore, further investigation on the environmental stability of Zn in such Zn-laden cement and concrete should be carried out.


2022 ◽  
Author(s):  
Glyn Roberts ◽  
Souvick Saha ◽  
Johanna Waldheim

Abstract This paper further develops an analysis of proppant distribution patterns in hydraulically fractured wells initially presented in SPE-199693-MS. A significantly enlarged database of in-situ perforation erosion measurements provides a more rigorous statistical basis allowing some previously reported trends to be updated, but the main objective of the paper is to present additional insights identified since the original paper was published. Measurements of the eroded area of individual perforations derived from downhole camera images again provide the input for this study. Entry hole enlargement during limited entry hydraulic fracturing provides strong and direct evidence that proppant was successfully placed into individual perforations. This provides a straightforward evaluation of cluster efficiency. Perhaps more importantly the volume of proppant placed into a perforation can also be inferred from the degree of erosion. Summing individual perforation erosion at cluster level allows patterns and biases to be identified and an understanding of proppant distribution across stages has been developed. Outcomes from an analysis of a database that now exceeds 50,000 eroded perforations are presented. Uniform reservoir stimulation is a key objective of fracture treatments but remains challenging to measure and report. The study therefore focused on understanding how uniformly proppant is distributed across more than 1,800 measured stages. Results demonstrate how proppant distribution within stages is influenced when treatment parameters change. Our approach was to vary one parameter, for example the stage length, while all other parameters were maintained at a consistent value. We investigated multiple parameters that can be readily controlled during treatment design and show how these can be manipulated to improve proppant distribution. These included stage length, cluster spacing, perforation count per cluster and perforation phase. Hydraulic fracturing is a complex, high energy process with numerous input parameters. At individual cluster and stage level outcomes can be unpredictable and diagnostic results are often quite variable. The approach taken here was to complete a statistical analysis of a sufficiently large dataset of in-situ measurements. This allowed common trends and patterns to be confidently identified and conclusions reached on how proppant distribution is affected by varying specific design parameters. This should be of interest and value to those designing hydraulic fracture treatments.


Sign in / Sign up

Export Citation Format

Share Document