radial force
Recently Published Documents


TOTAL DOCUMENTS

682
(FIVE YEARS 218)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Chao Ning ◽  
Yalin Li ◽  
Ping Huang ◽  
Hui Xu ◽  
Feng Zheng

The interaction between impeller and volute produces a complex and unsteady water flow. It involves the interference of the non-uniform flow (such as the impeller’s jet wake and a secondary flow). In this paper, the transient flow in a new type of dishwasher pump is investigated numerically. In addition, pressure measurements are used to validate the numerical method, and the simulation results agree well with the experiment. Three schemes, 0 rpm (revolutions per minute)/30 rpm/60 rpm, of volute speeds are investigated. Multiple monitoring points are set at different positions of the new dishwasher pump to record pressure-pulse signals. In addition, frequency signals are obtained using a Fast Fourier Transform, which is then used to analyze the effect of the volute tongue and the outflow of the impeller. The radial force on the principal axis is recorded, and the schemes with different rotation speeds of volute are compared. The results show that the volute speed has only a small effect on the pump performance. In addition, the speed of the volute mainly affects the flow field in the transition section located between impeller and volute. The difference of the flow field in the impeller depends on the relative position between the impeller and the volute. The time domain curve for the pressure pulse is periodic, and there is a deviation between the peak for the schemes in the outflow region. In the frequency domain, the characteristic frequency equals the blade passing frequency. In the outflow region, the effect of the volute speeds increases with increasing volute speed. For the radial force, the rotating volute strengthens the fluctuation of the radial force, which affects the operational stability of the pump. The shape of the vector distribution is most regular for the 30 rpm scheme, which indicates that the stability of the pump is the highest. This paper can be used to improve both the control and selection of volute speeds.


Author(s):  
Lingyu Chen ◽  
Adrien Thabuis ◽  
Yusuke Fujii ◽  
Akira Chiba ◽  
Masao Nagano ◽  
...  
Keyword(s):  

Author(s):  
Ali A. Yousif ◽  
Ahmed M. Mohammed ◽  
Mohammed Moanes E. Ali

A bearingless brushless direct current (BLDC) motor incorporates the function of magnetic bearings into a BLDC motor, making it a new type of high-performance motor. In this paper, the main motor windings are used to generate the radial force cancellation by injecting the required dc current, “integrated winding configuration”. The bearingless BLDC motor, direct current (DC) cancellation system model is established with the aid of (ANSYS/MAXWELL) software. The simulation results confirm that the rotor radial force is approximately zero and results from a balanced distribution of the magnetic flux density. The proposed DC excitation system is suitable to realize the rotor radial force cancellation in the bearingless BLDC motor. The simulation results of the proposed configuration show the approach of integrating winding configuration at different active pole positions to find the more efficient suspension performance and reduce the suspensions system current.


2021 ◽  
Author(s):  
Xiaobo Wang ◽  
Chaosheng Song ◽  
Lulu Li ◽  
Feng Jiao

Abstract Carbon fiber reinforced plastics (CFRP) is a new type of composite material that is widely used in the aviation field, the influence mechanism of fiber cutting angle on cutting force is analyzed, a theoretical model of ultrasonic assisted cutting force for CFRP is established, ultrasonic assisted longitudinal-torsional cutting experiments of CFRP disc are carried out, and compared with normal cutting process. According to the experimental results, the radar map of the cutting force along the circumference of CFRP unidirectional laminates is established, which show that the cutting force can be reduced by ultrasonic assisted cutting compared with ordinary cutting. Under the three cutting modes, the fiber cutting angle has a great influence on the tangential force, and the radial force of the same fiber cutting angle is less than the tangential force, the maximum radial force appeared near the fiber cutting angle of 120°, while the minimum tangential force and the minimum radial force both appear near the parallel direction cutting at 0°. The research results can be used for reference in the processing of CFRP and other composite materials.


Author(s):  
Min Dai ◽  
Zi-Wei Zhang ◽  
Md Mehedi Hassan Dorjoy ◽  
Li Zeng

In this paper, in order to reduce the influence of vibration and noise generated by the motor in rock cotton centrifuges on the quality of the output fiber and the damage to the operator’s hearing, it is meaningful to analyze and optimize the vibration and noise. A high-speed magnetic suspension motor is proposed for the rock cotton centrifuge in the paper. First, the motor model is established in Maxwell, the radial force density wave distributed in the air gap is calculated by the field solver, the main harmonic source is analyzed according to its FFT decomposition graph, and then the optimization scheme of short-range double-layer winding is determined. Second, the optimization scheme is analyzed in modal mode and harmonious response, and the vibration response spectrum of the motor stator is obtained. Finally, the electromagnetic noise characteristics of the motor are obtained through ANSYS acoustics simulation. The results show that the optimized motor noise has a reasonable level under the premise of ensuring electromagnetic performance.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2383
Author(s):  
Zeyuan Liu ◽  
Mei Chen ◽  
Yan Yang ◽  
Chengzi Liu ◽  
Hui Gao

A bearingless switched reluctance motor (BSRM) has the combined characteristics of a switched reluctance motor (SRM) and a magnetic bearing. The hybrid-rotor BSRM (HBSRM) discussed in the paper has a twelve-pole stator and an eight-pole hybrid rotor, which is composed of a cylindrical rotor and a salient-pole rotor. Although the asymmetry of the hybrid rotor makes the structure and magnetic field of the HBSRM more complex, it can always produce a significant amount of magnetic pulling force to levitate a rotor shaft at all the rotor angular positions of each phase, which is not available in a traditional BSRM. The classical mathematical model for a conventional BSRM is valid only when its rotor rotates from the start of the overlap position to the aligned position, and the radial force and torque derived from this model are discontinuous at the aligned positon, which is harmful to the motor’s stable operation. In this paper, a full-period mathematical model on the assumption that the gap permeance is cut apart by straight lines or improved elliptical lines for a 12/8-pole HBSRM is provided. On the basis of this mathematical model, the continuity of the radial force and torque at all the rotor angular positions can be guaranteed, and the fine characteristics of this mathematical model have been verified by simulations.


2021 ◽  
Vol 24 (2) ◽  
pp. 5-8
Author(s):  
Anđelko Aleksić ◽  
◽  
Milenko Sekulić ◽  
Marin Gostimirović ◽  
Dragan Rodić ◽  
...  

The objective of this paper is to investigate the effect of cutting parameters on cutting forces during turning of CPM 10V steel with coated cutting tool. Machining of CPM 10V steel and finding a suitable tool is very challenging due to its physical and mechanical properties, especially since the machining of this material has not been extensively researched. The experiments were carried out using an Index GU -600 CNC lathe and the cutting forces were measured in process. A three-factorial three-level experimental design was used for the experiments. Statistical method analysis of variance (ANOVA) is applied to study the effects of cutting speed, feed rate, and depth of cut on cutting forces. The results of this study show that depth of cut has the most significant effect on main force and radial force, while feed rate and cutting speed have the most significant effect on feed force. The developed model can be used in the machining industry to predict and analyze cutting parameters for optimal cutting forces.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
P. Bhogal ◽  
T. Simpanen ◽  
K. Wong ◽  
D. Bushi ◽  
M. A. Sirakov ◽  
...  

Abstract Background The use of self-expanding stents to treat post-hemorrhagic cerebral vasospasm was recently described. We sought to determine the clinical efficacy of the Cascade device to treat delayed cerebral vasospasm (DCV). We performed benchside tests to determine the chronic outward force exerted by the Cascade in comparison to the Solitaire. Methods The chronic outward force (COF) of the Cascade M agile and Cascade L Agile was tested with equivalent tests of the Solitaire 4x20mm. Further tests to determine the forces generated in pre-formed tubes of 1.5–6 mm were performed using both fully and partially unsheathed Cascades. A retrospective review to identify all patients with aSAH and DCV treated with a Cascade device between January 2020 and July 2021. We recorded the treatment arterial vessel diameters and hemorrhagic or ischemic complications. Results In vitro the Cascade generated greater radial force than the Solitaire. The force generated by the Cascade M Agile at 1.5 mm was approximately 64% higher than the Solitaire 6x40mm and approximately 350% higher than the Solitaire 4x20mm. 4 patients with DCV were identified all of whom were treated with a cascade device. In all cases there was a significant improvement in the diameter of the vasospastic vessels treated with an average diameter increase of approximately 300%. There were no complications from the Cascade. Delayed CT angiography showed persistent dilatation of the segments treated with the Cascade at 24 h. Conclusion The Cascade is a safe and effective device when used to treat DCV secondary to aSAH. Larger studies are required to validate our initial results.


Sign in / Sign up

Export Citation Format

Share Document