Edge Analytics and Artificial Intelligence are important features of the current smart connected living community. In a society where people, homes, cities, and workplaces are simultaneously connected through various devices, primarily through mobile devices, a considerable amount of data is exchanged, and the processing and storage of these data are laborious and difficult tasks. Edge Analytics allows the collection and analysis of such data on mobile devices, such as smartphones and tablets, without involving any cloud-centred architecture that cannot guarantee real-time responsiveness. Meanwhile, Artificial Intelligence techniques can constitute a valid instrument to process data, limiting the computation time, and optimising decisional processes and predictions in several sectors, such as healthcare. Within this field, in this article, an approach able to evaluate the voice quality condition is proposed. A fully automatic algorithm, based on Deep Learning, classifies a voice as healthy or pathological by analysing spectrogram images extracted by means of the recording of vowel /a/, in compliance with the traditional medical protocol. A light Convolutional Neural Network is embedded in a mobile health application in order to provide an instrument capable of assessing voice disorders in a fast, easy, and portable way. Thus, a straightforward mobile device becomes a screening tool useful for the early diagnosis, monitoring, and treatment of voice disorders. The proposed approach has been tested on a broad set of voice samples, not limited to the most common voice diseases but including all the pathologies present in three different databases achieving F1-scores, over the testing set, equal to 80%, 90%, and 73%. Although the proposed network consists of a reduced number of layers, the results are very competitive compared to those of other “cutting edge” approaches constructed using more complex neural networks, and compared to the classic deep neural networks, for example, VGG-16 and ResNet-50.