scholarly journals Stress-strain state of thick-walled anisotropic cylindrical shells under thermal power load, protected by the functionally graded material

Author(s):  
Mykola Semenyuk ◽  
Volodymyr Trach ◽  
Andrii Podvornyi

In the article the stress-strain state of thick-walled structurally anisotropic composite cylindrical shells under thermal power load, which are protected by a functionally graded material, are analysed. Based on the interrelations of the spatial theory of elasticity, a system of inhomogeneous differential equations in three-dimensional formulation, which describes the stress-strain state of thick-walled anisotropic cylindrical shells, was obtained. To reduce the dimensionality of this system, the Bubnov-Galerkin analytical method was used. Thus, the obtained one-dimensional system of twelve equations of normal Cauchy form was implemented using the numerical method of discrete orthogonalization. To represent the possibilities of the proposed approach, there were used stress-strain states of two, four and five-layered anisotropic cylindrical shells of fibrous composites, protected from temperature by a layer of transversely isotropic functionally graded material.

2012 ◽  
Vol 376 (45) ◽  
pp. 3351-3358 ◽  
Author(s):  
Huijie Shen ◽  
Jihong Wen ◽  
Michael P. Païdoussis ◽  
Dianlong Yu ◽  
Meisam Asgari ◽  
...  

2018 ◽  
Vol 18 (11) ◽  
pp. 1850138 ◽  
Author(s):  
Yueyang Han ◽  
Xiang Zhu ◽  
Tianyun Li ◽  
Yunyan Yu ◽  
Xiaofang Hu

An analytical approach for predicting the free vibration and elastic critical load of functionally graded material (FGM) thin cylindrical shells filled with internal pressured fluid is presented in this study. The vibration of the FGM cylindrical shell is described by the Flügge shell theory, where the internal static pressure is considered as the prestress term in the shell equations. The motion of the internal fluid is described by the acoustic wave equation. The natural frequencies of the FGM cylindrical shell under different internal pressures are obtained with the wave propagation method. The relationship between the internal pressure and the natural frequency of the cylindrical shell is analyzed. Then the linear extrapolation method is employed to obtain the elastic critical load of the FGM cylindrical shell from the condition that the increasing pressure has resulted in zero natural frequency. The accuracy of the present method is verified by comparison with the published results. The effects of gradient index, boundary conditions and structural parameters on the elastic critical load of the FGM cylindrical shell are discussed. Compared with the experimental and numerical analyses based on the external pressure, the present method is simple and easy to carry out.


2017 ◽  
Vol 21 (3) ◽  
pp. 938-972 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga ◽  
Pham Minh Vuong

This paper investigates analytically nonlinear buckling and postbuckling of functionally graded sandwich circular thick cylindrical shells filled inside by Pasternak two-parameter elastic foundations under thermal loads and axial compression loads. Shells are reinforced by closely spaced functionally graded material (FGM) rings and stringers. The temperature field is taken into account. Two general Sigmoid law and general power law, with four models of stiffened FGM sandwich cylindrical shell, are proposed. Using the Reddy’s third-order shear deformation shell theory (TSDT), stress function, and Lekhnitsky’s smeared stiffeners technique, the governing equations are derived. The closed form to determine critical axial load and postbuckling load-deflection curves are obtained by the Galerkin method. The effects of the face sheet thickness to total thickness ratio, stiffener, foundation, material, and dimensional parameters on critical thermal loads, critical mechanical loads and postbuckling behavior of shells are analyzed. In addition, this paper shows that for thin shells we can use the classical shell theory to investigate stability behavior of shell, but for thicker shells the use of TSDT for analyzing nonlinear stability of shell is necessary and suitable.


Sign in / Sign up

Export Citation Format

Share Document