thermal loads
Recently Published Documents


TOTAL DOCUMENTS

780
(FIVE YEARS 184)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Can Cui ◽  
Qing Lu ◽  
Chengchao Guo ◽  
Fuming Wang

Under the repeated action of traffic and thermal loads, a cement concrete pavement slab may partially lose contact with its base course, and voids may develop underneath the slab. Such distress will greatly impact the pavement performance. To fill the voids and restore the base support to the slab, the technology of polymer grouting has been increasingly adopted in recent years due to its advantages of quick application and high efficiency. There is, however, a lack of research on the mechanistic responses and performance of such a repaired rigid pavement under coupled influences of thermal and traffic loads. Existing literature has mainly focused on normal cement concrete pavement structures (i.e., without polymer grouted voids). This study intends to fill the research gap by investigating the time-domain characteristics of thermal stress response of a cement concrete pavement with underlying voids filled with polymer grout, along with design traffic loads. The finite element method was adopted with a 3-dimensional nonlinear temperature field within the pavement. A program module was developed in the Abaqus FEA software environment for temperature effect analysis. It was found that under the coupling action of thermal and traffic loads, thermal stress had a greater influence on the critical slab stress at the slab corner than those at other slab locations. Through the comparative analysis before and after polymer grouting repair, the critical tensile stress at the slab corner under the vehicle and thermal loads can be effectively reduced. The polymer performance is stable after three years.


Author(s):  
Mariasole Laureti ◽  
Sebastian Karl

AbstractThe assessment of thermal loads occurring on reusable launch vehicles during the entire trajectory is essential for the correct dimensioning of the thermal protection system. Due to the costs and limitations of ground-based testing for large-scale vehicles, these predictions rely intensively on numerical simulations (CFD). The need of aero-thermal databases, as a fast-response surrogate model for the aero-thermodynamic heating, arises from the practical impossibility of performing unsteady CFD analysis over the entire trajectory due to the large disparity of fluid mechanical and structural time scales. The construction of these databases is based on a representative set of CFD simulations which cover, at a minimum, the flight regimes with significant thermal loads. The aim of this paper is to analyse the results of these representative CFD simulations during both the ascent flight and atmospheric entry for the RETALT1 vehicle to show typical flow field phenomena occurring during these phases and the resulting heating patterns.


Author(s):  
Mohammad Salahi Nezhad ◽  
Dimosthenis Floros ◽  
Fredrik Larsson ◽  
Elena Kabo ◽  
Anders Ekberg

2021 ◽  
pp. 201-205
Author(s):  
С.А. Гордин ◽  
И.В. Зайченко ◽  
К.Д. Хряпенко ◽  
В.В. Бажеряну

В статье рассмотрен вопрос повышения точности и качества управления приводом сетевых насосов в составе судовых тепловых установок в системе отопления судна путем применения адаптивной системы автоматического управления. При использовании классических систем управления на основе ПИД-регуляторов для управления мощностью электродвигателя по критерию обеспечения заданного давления в системе теплоснабжения в условиях резкопеременных тепловых нагрузок могут возникать ситуации разрегулирования системы вследствии возникновения дополнительного давления в тепловой установке при термическом расширении теплоносителя. Для обеспечения надежности и безаварийности работы судовых тепловых установок при резкоперменных нагрузках авторами рассматривается возможность использования для управления мощностью электропривода адаптивной системы управления. В статье рассмотрена схема управления с адаптацией коэффициентов ПИД-регулятора на базе нейронной сети (нейросетевой оптимизатор). Нейросетевой оптимизатор был применен как надстройка над ПИД-регулятором в схеме управления мощностью сетевого насоса в составе судовой тепловой установки. Рассмотрены зависимости характеристик систем управления от структуры и параметров модифицированных критериев точности и качества управления. Адаптация параметров регулирования позволяет обеспечить достижение желаемых параметров с меньшими затратами мощности при сохранении уровня надежности и исключить разрегулирование системы управления при резкопеременных тепловых нагрузках. The article discusses the issue of improving the accuracy and quality of control of the drive of network pumps as part of ship thermal installations in the ship's heating system by using an adaptive automatic control system. When using classical control systems based on PID regulators to control the power of the electric motor according to the criterion of providing a given pressure in the heat supply system under conditions of sharply varying thermal loads, situations of system maladjustment may occur due to the appearance of additional pressure in the thermal installation during thermal expansion of the coolant. To ensure the reliability and trouble-free operation of ship thermal installations under abruptly variable loads, the authors consider the possibility of using an adaptive control system to control the power of an electric drive. The article describes a control scheme with adaptation of the PID controller coefficients based on a neural network (neural network optimizer). The neural network optimizer was used as a superstructure over the PID controller in the power control circuit of a network pump as part of a ship's thermal installation. The dependences of the characteristics of control systems on the structure and parameters of the modified criteria for the accuracy and quality of control are considered. Adaptation of control parameters allows achieving the desired parameters with lower power consumption while maintaining the level of reliability and eliminating deregulation of the control system at abruptly varying thermal loads.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012025
Author(s):  
P Mirek

Abstract The paper presents the results of operational measurements of the suspension density distribution in the 966 MWth supercritical Circulating Fluidized Bed boiler. The tests were carried out for four different unit thermal loads, i.e. 40, 60, 80, and 100% MCR. The conducted operational measurements showed that the suspension density distribution of the particulate material in the combustion chamber of the CFB boiler has the form of an exponential curve with maximum values occurring in the bottom part of the furnace. On the basis of the operational data, an attempt was made to reflect the suspension density distribution in the combustion chamber of the boiler using the ANSYS CFD software. The calculations were carried out using the Eulerian multiphase model in an unsteady state condition. As revealed by the simulations, the Eulerian multiphase model allows for a quantitative representation of the suspension density distribution of the granular material only for the maximum boiler load. For other thermal loads, quantitative representation of experimental distributions of suspension density using the Eulerian method is possible except for the dense region.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7194
Author(s):  
Dongdong Li ◽  
He Zhu ◽  
Xiaojing Gong

This paper presents an analytical solution for the thermomechanical buckling of functionally graded material (FGM) sandwich plates. The solution is obtained using a four-variable equivalent-single-layer (ESL) plate theory. Two types of sandwich plates are included: one with FGM facesheets and homogeneous core, and vice versa for the other. The governing equations are derived based on the principle of minimum total potential energy. For simply supported boundary conditions, these equations are solved via the Navier method. The results on critical buckling load and temperature increment of simply supported FGM sandwich plates are compared with the available solutions in the literature. Several results are presented considering various material and geometrical parameters as well as their effect on the thermomechanical buckling response of FGM sandwich plates. The relationship between the mechanical load and the temperature increment for uniform/linear temperature rise of FGM sandwich plates under combined mechanical and thermal loads is studied.


2021 ◽  
Vol 28 (4) ◽  
pp. 37-49
Author(s):  
Madgeed A. Al-Doury ◽  
Atif Ali Hasan ◽  
Raheem Kadhim Mohammed ◽  
Riyadh H. Al-Jawad

Thermophysical Properties of Building Materials are Considered to have high importance in predicting building thermal performance, calculating thermal loads inside building, and optimizing the use of a building and insulating materials. Due to the lack of measurements of local building materials properties, designers and air- conditioning engineers have no choice but to use the published foreign data, which probably leads to inaccurate predictions of thermal loads and may give a false thermal performance. At the same time, it leads to an over-designed capacity of air- conditioning systems that lead to increased energy consumption in the building. Thus, it is clear that it was important to conduct this research to evaluate the thermal conductivity and thermal resistance of Iraqi building materials. The number of the local building materials were listed, and specimens were collected from their sites, factories, and suppliers such as bricks, stones, concrete products, gypsum, etc. Those samples were dimensioned to the specific size required when a measurement was conducted by the Hot Wire method. All measurements were carried out at room temperature. The relationship between thermal conductivity, density, moisture content, and pressure for a number of materials was Studied. A comparison between the measurements of the Iraqi building materials and results published in the ASHRAE, CIBS Guide, Australian Specifications, and Jordanian Specifications was made. However, the availability of such data is important for the climatic design of buildings, thermal load calculations for air- conditioning, and choosing the insulating materials.


Sign in / Sign up

Export Citation Format

Share Document