scholarly journals Isobaric Vapor Liquid Equilibrium Determination for 1,3,5-Trimethylbenzene + Ethanol and 1,3,5-Trimethylbenzene + n-Butanol Binary Systems

2019 ◽  
Vol 64 (4) ◽  
pp. 446-456
Author(s):  
Marilena Nicolae ◽  
Costin Sorin Bîldea

The vapor-liquid equilibrium data are necessary for the design of the distillation columns which separate the mixture mesitylene – ABE components resulting from the liquid-liquid extraction of butanol from the ABE using 1,3,5-trimethylbenzene as solvent. In this work, the vapor - liquid equilibrium data is determined for the binary systems: ethanol + 1,3,5-trimethylbenzene and n-butanol + 1,3,5-trimethylbenzene at constant pressure of 93.325 KPa using a double phase circulation apparatus. Thus, P-T-x-y data is determined, which is further processed by regression to determine the binary interaction parameters of the NRTL and UNIQUAC models. Furthermore, the T-x-y diagrams are calculated using the completed thermodynamic models (NRTL and UNIQUAC) and the UNIFAC predictive model, and compared with the experimental diagrams.

2017 ◽  
Vol 5 (2) ◽  
pp. 37-44 ◽  
Author(s):  
Asalil Mustain ◽  
Anang Takwanto ◽  
Dhoni Hartanto

In this work, the binary interaction parameters of vapor-liquid equilibrium for the mixtures of primary alcohols (methanol, ethanol, 1-propanol or 1-butanol) with C5 alcohols were obtained. A total of 15 systems that consisted of isobaric vapor-liquid equilibrium data at atmospheric pressure were selected. The binary interaction parameters were determined as temperature function by correlating the selected vapor-liquid equilibrium data using the Wilson, Non-Random Two-Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models. The binary interaction parameters were described as the temperature-dependent to increase the capability of the parameters for the application in wide range of temperature. The correlation showed good results because the root mean square deviation (RMSD) between the calculation values and experimental data were relatively low. The obtained parameters were very useful for optimizing the distillation column in the bio-ethanol purification process.


2011 ◽  
Vol 56 (9) ◽  
pp. 3510-3517 ◽  
Author(s):  
Mark T. G. Jongmans ◽  
Jenny I. W. Maassen ◽  
Adriaan J. Luijks ◽  
Boelo Schuur ◽  
André B. de Haan

Sign in / Sign up

Export Citation Format

Share Document