total pressure
Recently Published Documents


TOTAL DOCUMENTS

1793
(FIVE YEARS 296)

H-INDEX

46
(FIVE YEARS 4)

Shock Waves ◽  
2022 ◽  
Author(s):  
M. Rezay Haghdoost ◽  
B. S. Thethy ◽  
M. Nadolski ◽  
B. Seo ◽  
C. O. Paschereit ◽  
...  

AbstractMitigation of pressure pulsations in the exhaust of a pulse detonation combustor is crucial for operation with a downstream turbine. For this purpose, a device termed the shock divider is designed and investigated. The intention of the divider is to split the leading shock wave into two weaker waves that propagate along separated ducts with different cross sections, allowing the shock waves to travel with different velocities along different paths. The separated shock waves redistribute the energy of the incident shock wave. The shock dynamics inside the divider are investigated using numerical simulations. A second-order dimensional split finite volume MUSCL-scheme is used to solve the compressible Euler equations. Furthermore, low-cost simulations are performed using geometrical shock dynamics to predict the shock wave propagation inside the divider. The numerical simulations are compared to high-speed schlieren images and time-resolved total pressure recording. For the latter, a high-frequency pressure probe is placed at the divider outlet, which is shown to resolve the transient total pressure during the shock passage. Moreover, the separation of the shock waves is investigated and found to grow as the divider duct width ratio increases. The numerical and experimental results allow for a better understanding of the dynamic evolution of the flow inside the divider and inform its capability to reduce the pressure pulsations at the exhaust of the pulse detonation combustor.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 154
Author(s):  
Srirat Chuayboon ◽  
Stéphane Abanades

The solar carbo-thermal and methano-thermal reduction of both MgO and ZnO were performed in a flexible solar reactor operated at low pressure through both batch and continuous operations. The pyro-metallurgical process is an attractive sustainable pathway to convert and store concentrated solar energy into high-value metal commodities and fuels. Substituting fossil fuel combustion with solar energy when providing high-temperature process heat is a relevant option for green extractive metallurgy. In this study, a thermodynamic equilibrium analysis was first performed to compare the thermochemical reduction of MgO and ZnO with solid carbon or gaseous methane, and to determine the product distribution as a function of the operating conditions. The carbo-thermal and methano-thermal reduction of the MgO and ZnO volatile oxides was then experimentally assessed and compared using a directly irradiated cavity-type solar reactor under different operating conditions, varying the type of carbon-based reducing agent (either solid carbon or methane), temperature (in the range 765–1167 °C for ZnO and 991–1550 °C for MgO), total pressure (including both reduced 0.10–0.15 bar and atmospheric ~0.90 bar pressures), and processing mode (batch and continuous operations). The carbo-thermal and methano-thermal reduction reactions yielded gaseous metal species (Mg and Zn) which were recovered at the reactor outlet as fine and reactive metal powders. Reducing the total pressure favored the conversion of both MgO and ZnO and increased the yields of Mg and Zn. However, a decrease in the total pressure also promoted CO2 production because of a shortened gas residence time, especially in the case of ZnO reduction, whereas CO2 formation was negligible in the case of MgO reduction, whatever the conditions. Continuous reactant co-feeding (corresponding to the mixture of metal oxide and carbon or methane) was also performed during the solar reactor operation, revealing an increase in both gas production yields and reaction extent while increasing the reactant feeding rate. The type of carbon reducer influenced the reaction extent, since a higher conversion of both MgO and ZnO was reached when using carbon with a highly available specific surface area for the reactions. The continuous solar process yielded high-purity magnesium and zinc content in the solar-produced metallic powders, thus confirming the reliability, flexibility, and robustness of the solar reactor and demonstrating a promising solar metallurgical process for the clean conversion of both metal oxides and concentrated solar light to value-added chemicals.


2022 ◽  
pp. 29-36
Author(s):  
G. A. Vityuk ◽  
V. A. Vityuk ◽  
A. D. Vurim ◽  
R. Y. Kelcingazina ◽  
B. Y. Bekmagambetova

The article is devoted to an issue of estimating the impurity gas amount in nuclear fuel in the aspect of the distracting contribution from released gases to the total pressure inside ampoule of the device in the simulating a severe accident with core melting. The paper presents a method based on measuring the pressure and temperature of gas in a closed values of the fuel elements during the fuel melting. The correctness of the developed methodology is confirmed by the results of experiments on the melting of fuel in a pulsed graphite reactor IGR with the implementation of a controlled neutron pulse.


2022 ◽  
Vol 131 (1) ◽  
pp. 013303
Author(s):  
Pierre-Yves C. R. Taunay ◽  
Christopher J. Wordingham ◽  
Edgar Y. Choueiri

2022 ◽  
Vol 9 ◽  
Author(s):  
C. Liu ◽  
Y. Li ◽  
Z. Zhou ◽  
P. Wiśniewski

Under the influence of many factors, the surface roughness of the cascade will change during turbomachinery operation, which will affect the boundary layer flow of the cascade. In this article, the effects of cascade surface roughness on boundary layer flow under variable conditions are analyzed by experiments and numerical simulation. The results show that with the increase of roughness, the total pressure loss coefficient of the cascade decreases first and then increases. The larger the Reynolds number is, the greater the total pressure loss coefficient is, and the sensitive area of loss change is changed. In the sensitive area, the roughness has a greater influence on cascade loss. There are separation bubbles at the suction front edge of smooth cascades. With the increase of roughness, the degree of turbulence increases, and the transition process is accelerated. When the roughness is between 74 and 150 μm, the separation bubble disappears and the separation loss decreases. In conclusion, the aerodynamic loss of the cascade increases with the increase of roughness, and the cascade efficiency decreases. However, roughness can restrain the flow separation and reduce the separation loss. The two have gone through a process of one and the other. When the roughness is 74 μm, the displacement thickness, momentum thickness, and shape factor at the back of the cascade are the minimum.


2022 ◽  
Vol 355 ◽  
pp. 01017
Author(s):  
Ying Liu ◽  
Xiaobo Zhang ◽  
Yang Yu ◽  
Bingkun Yan ◽  
Congrui Cai ◽  
...  

During the development of the stealth fighter, the S-shaped inlet enters the designer’s vision because it has better stealth than bump inlet and straight inlet. During the use of the S-shaped inlet, due to its structural reasons, secondary flow is likely to occur in the curved section, which directly causes the flow state to be changeable and complicated. Therefore, this paper takes the S-shaped inlet as the research object to analyzes the steady flow field simulation under uniform inlet condition and distortion inlet condition and analyze the flow field of the airflow and the total pressure of each section under the S-shaped inlet by changing the intake distortion conditions with CFX software. The results show that although the S-shaped inlet will occur total pressure distortion under uniform intake. However, when the S-shaped inlet work under certain flight conditions, the level of total pressure distortion will be smaller than the uniform inlet condition, which can improve the air intake performance. Finally, it can be inferred that with use of the S-shaped intake port, the deterioration of distortion may be prevented under certain specific intake conditions.


Author(s):  
Hongjie Zhang ◽  
Zhengdao Wang ◽  
Hui Yang ◽  
Zuchao Zhu ◽  
Yikun Wei

The work proposed the double parameter optimization method of the non-volute centrifugal fan’s blade profile based on the steepest descent method. Total-pressure efficiency improvement at the high-flow area was taken as an optimization objective. A method of applying the steepest descent method to modify the blade profile of backward centrifugal fan is proposed in this paper. The gradient descent direction was analyzed to design the blade profile and obtain the optimal blade profile at a high-flow rate. Besides, numerical simulations were carried out to analyze the aerodynamic performance and the internal flow characteristics of the centrifugal fan by the computational fluid dynamics method. Numerical results showed that the blade profile along the gradient descent was optimized to effectively increase the total pressure and the total pressure efficiency of the original model at the high-flow rate. The steepest descent method for local optimization could improve the fan blade design.


2021 ◽  
Vol 2 (11(75)) ◽  
pp. 34-42
Author(s):  
V. Mel’nick ◽  
N. Gnateiko

The forced movement of the submarine under the action of an acoustic pressure wave at rectilinear and uniform movement of the device is analyzed. The analysis of the dynamics of translational movement of the hull under the action of an acoustic pressure wave in an ideal environment, which makes it possible to assess the physical properties of the environment and the elastic properties of the outer hull on the value of the maximum movement of the submarine. It is proved that if the total pressure pulse is limited, then the water particles will receive certain displacements and it can be expected that under these conditions the displacement of the submarine will be determined. The results of the analysis make it possible to conduct a comparative analysis of the translational movement of the submarine under the action of an acoustic pressure wave, taking into account the characteristics of the moving medium, more precisely, taking into account the viscosity of the real medium


Sign in / Sign up

Export Citation Format

Share Document