BOREAS HYD-05 BEAR TRAP CREEK AND NAMEKUS LAKE WINTER SURFACE FLUX DATA

Author(s):  
R. HARDING
Keyword(s):  
Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1297
Author(s):  
Hans-Rolf Dübal ◽  
Fritz Vahrenholt

Radiative energy flux data, downloaded from CERES, are evaluated with respect to their variations from 2001 to 2020. We found the declining outgoing shortwave radiation to be the most important contributor for a positive TOA (top of the atmosphere) net flux of 0.8 W/m2 in this time frame. We compare clear sky with cloudy areas and find that changes in the cloud structure should be the root cause for the shortwave trend. The radiative flux data are compared with ocean heat content data and analyzed in the context of a longer-term climate system enthalpy estimation going back to the year 1750. We also report differences in the trends for the Northern and Southern hemisphere. The radiative data indicate more variability in the North and higher stability in the South. The drop of cloudiness around the millennium by about 1.5% has certainly fostered the positive net radiative flux. The declining TOA SW (out) is the major heating cause (+1.42 W/m2 from 2001 to 2020). It is almost compensated by the growing chilling TOA LW (out) (−1.1 W/m2). This leads together with a reduced incoming solar of −0.17 W/m2 to a small growth of imbalance of 0.15 W/m2. We further present surface flux data which support the strong influence of the cloud cover on the radiative budget.


1995 ◽  
Vol 100 (D12) ◽  
pp. 25631 ◽  
Author(s):  
Mark D. Heiser ◽  
Piers J. Sellers
Keyword(s):  
Data Set ◽  

Sign in / Sign up

Export Citation Format

Share Document