east sea
Recently Published Documents


TOTAL DOCUMENTS

1166
(FIVE YEARS 210)

H-INDEX

46
(FIVE YEARS 4)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 203
Author(s):  
Hyungbeen Lee ◽  
Junghwa Choi ◽  
Yangjae Im ◽  
Wooseok Oh ◽  
Kangseok Hwang ◽  
...  

The spatial and temporal distribution of euphausiid Euphausia pacifica and fish schools were observed along acoustic transects in the coastal southwestern East Sea. Two-frequency (38- and 120-kHz) acoustic backscatter data were examined from April to July 2010. A dB identification window (SV120–38) and school detection algorithm identified E. pacifica and fish schools in the acoustic backscatter, respectively. The E. pacifica was regularly observed in middle of southern waters, where phytoplankton was abundant during spring, and irregularly during summer, when phytoplankton was homogeneously distributed. Using the distorted-wave Born approximation model, the acoustic density of E. pacifica calculated was higher in spring (April: 75.9 mg m−2, May: 85.3 mg m−2) than in summer (June: 71.4 mg m−2, July: 54.1 mg m−2). The fish schools in the acoustic data tended to significantly increase from spring to summer. Although major fish species, such as anchovies and herring, fed on copepods and euphausiids in the survey area, the temporal and spatial distribution of E. pacifica was weakly correlated with the distribution of the fish schools. These findings aid in our understanding of the temporal and spatial distribution dynamics of euphausiids and fish schools in the food web of the coastal southwestern East Sea.


2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Dmitry Stepanov ◽  
Vladimir Fomin ◽  
Anatoly Gusev ◽  
Nikolay Diansky

The driving mechanisms of mesoscale processes and associated heat transport in the Japan/East Sea (JES) from 1990 to 2010 were examined using eddy-resolving ocean model simulations. The simulated circulation showed correctly reproduced JES major basin-scale currents and mesoscale dynamics features. We show that mesoscale eddies can deepen isotherms/isohalines up to several hundred meters and transport warm and low salinity waters along the western and eastern JES boundaries. The analysis of eddy kinetic energy (EKE) showed that the mesoscale dynamics reaches a maximum intensity in the upper 300 m layer. Throughout the year, the EKE maximum is observed in the southeastern JES, and a pronounced seasonal variability is observed in the southwestern and northwestern JES. The comparison of the EKE budget components confirmed that various mechanisms can be responsible for the generation of mesoscale dynamics during the year. From winter to spring, the baroclinic instability of basin-scale currents is the leading mechanism of the JES mesoscale dynamics’ generation. In summer, the leading role in the generation of the mesoscale dynamics is played by the barotropic instability of basin-scale currents, which are responsible for the emergence of mesoscale eddies, and in autumn, the leading role is played by instabilities and the eddy wind work. We show that the meridional heat transport (MHT) is mainly polewards. Furthermore, we reveal two paths of eddy heat transport across the Subpolar Front: along the western and eastern (along 138∘ E) JES boundaries. Near the Tsugaru Strait, we describe the detected intensive westward eddy heat transport reaching its maximum in the first half of the year and decreasing to the minimum by summer.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 58
Author(s):  
Donghoon Shin ◽  
Tae Hee Park ◽  
Chung-Il Lee ◽  
Kangseok Hwang ◽  
Doo Nam Kim ◽  
...  

The aim of this study was to assess seasonal variation in the food-web structure of fish assemblages in the East (two sites) and the South (one site) Seas of Korea, and to compare the isotopic niche areas between the regions. To do this, we analyzed the community structures and the δ13C and δ15N values for fish assemblages, and their potential food sources collected during May and October 2020. There were spatial differences in the diversity and dominant species of fish assemblages between the two seas. The fish assemblages in the South Sea had relatively wide ranges of δ13C and δ15N (−22.4‰ to −15.3‰ and 7.4‰ to 13.8‰, respectively) compared to those (−22.1‰ to −18.0‰ and 9.8‰ to 13.6‰, respectively) in the East Sea. The δ13C and δ15N values of suspended particulate organic matter, zooplankton, and fish assemblages differed significantly among sites and between seasons (PERMANOVA, p < 0.05, in all cases). Moreover, isotopic niche indices were relatively higher in the South Sea compared to those in the East Sea. Such differences in food-web characteristics among sites are likely due to the specific environmental effects (especially, major currents) on the differences in the species compositions and, therefore, their trophic relationships. Overall, these results allow for a deeper understanding of the changing trophic diversity and community structure of fish assemblages resulting from climate variability.


2021 ◽  
Vol 54 (6) ◽  
pp. 717-731
Author(s):  
SoonYoung Choi ◽  
ChangHwan Kim ◽  
WonHyuck Kim ◽  
HyunSoo Rho ◽  
ChanHong Park

2021 ◽  
Vol 14 (1) ◽  
pp. 72
Author(s):  
Myung-Sook Park ◽  
Seonju Lee ◽  
Jae-Hyun Ahn ◽  
Sun-Ju Lee ◽  
Jong-Kuk Choi ◽  
...  

The first geostationary ocean color data from the Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) have been accumulating for more than ten years from 2010. This study performs a multi-year quality assessment of GOCI chlorophyll-a (Chl-a) and radiometric data for 2012–2021 with an advanced atmospheric correction technique and a regionally specialized Chl-a algorithm. We examine the consistency and stability of GOCI, Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) level 2 products in terms of annual and seasonal climatology, two-dimensional frequency distribution, and multi-year time series. Overall, the GOCI agrees well with MODIS and VIIRS on annual and seasonal variability in Chl-a, as the central biological pattern of the most transparent waters over the western North Pacific, productive waters over the East Sea, and turbid waters over the Yellow Sea are reasonably represented. Overall, an excellent agreement is remarkable for western North Pacific oligotrophic waters (with a correlation higher than 0.91 for Chl-a and 0.96 for band-ratio). However, the sporadic springtime overestimation of MODIS Chl-a values compared with others is notable over the Yellow Sea and East Sea due to the underestimation of MODIS blue-green band ratios for moderate-high aerosol optical depth. The persistent underestimation of VIIRS Chl-a values compared with GOCI and MODIS occurs due to inherent sensor calibration differences. In addition, the artificially increasing trends in GOCI Chl-a (+0.48 mg m−3 per 9 years) arise by the decreasing trends in the band ratios. However, decreasing Chl-a trends in MODIS and VIIRS (−0.09 and −0.08 mg m−3, respectively) are reasonable in response to increasing sea surface temperature. The results indicate GOCI sensor degradation in the late mission period. The long-term application of the GOCI data should be done with a caveat, however; planned adjustments to GOCI calibration (2022) in the following GOCI-II satellite will essentially eliminate the bias in Chl-a trends.


2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Suyun Noh ◽  
SungHyun Nam

Near-inertial internal waves (NIWs) generated by surface wind forcing are intermittently enhanced below and within the surface mixed layer. The NIW kinetic energy below the surface mixed layer varies over intraseasonal, interannual, and decadal timescales; however, these variations remain unexplored, due to a lack of long-term, in situ observations. We present statistical results on the nonseasonal variability of the NIW kinetic energy 400 m below the surface mixed layer in the southwestern East Sea, using moored current measurements from 21 years. We used long time series of the near-inertial band (0.85–1.15 f) kinetic energy to define nine periods of relatively high (period high) and seven periods of relatively low (period low) NIW kinetic energy. The NIW kinetic energy average at period high was about 24 times higher than that at period low and those in specific years (2003, 2012–2013, 2016, and 2020) and decade (2010s) were significantly higher than those in other years and decade (2000s). Composite analysis revealed that negative relative vorticity and strong total strain significantly enhance NIW kinetic energy at 400 m. The relative vorticity was negative (total strain was positively enhanced) during seven (six) out of nine events of period high. NIW trapping in a region of negative relative vorticity and the wave capture process induce nonseasonal variations in NIW kinetic energy below the surface mixed layer. Our study reveals that, over intraseasonal, interannual, and decadal timescales, mesoscale flow fields significantly influence NIWs.


2021 ◽  
Vol 9 (12) ◽  
pp. 1455
Author(s):  
Minji Lee ◽  
Hyejoo Ro ◽  
Yun-Bae Kim ◽  
Chan-Hong Park ◽  
Seung-Ho Baek

The area near the subpolar front of the East Sea has high primary productivity during the spring season. We conducted two surveys, one in early spring and another in late spring, to assess environmental factors that influence phytoplankton community structure during these times. During early spring, vertical mixing supplied abundant nutrients to the surface. Due to the well-mixed water column, there were high nutrient levels, but total phytoplankton abundances and diversity were relatively low and were dominated by the diatom Chaetoceros spp. During late spring, the water column gradually stratified, with relatively high levels of nutrients in the surface layers near the coastal areas. Phytoplankton abundance and diversity at that time were higher, and there were diatoms (Pseudo-nitzschia spp. and Chaetoceros spp.), cryptophytes, and small flagellates. Pseudo-nitzschia spp. were especially abundant in re-sampled areas. The presence of a stratified and stable water mass and sufficient nitrate led to high phytoplankton growth, even in the open sea during late spring. These findings provide a better understanding of how phytoplankton population dynamics in the East Sea depend on water column stability during both early and late spring seasons.


Sign in / Sign up

Export Citation Format

Share Document