scholarly journals Solar Photovoltaic Emulation under Uniform Irradiance and Partial Shading Conditions using Sliding Mode Control

Author(s):  
Mustapha Alaoui ◽  
Hattab Maker ◽  
Azeddine Mouhsen ◽  
Hicham Hihi

For the purpose of minimizing greenhouse gas emissions and contributing strongly to the climate change mitigation, many researchers and scientists are making tremendous efforts in order to boost the research and development in renewable energies as an important solution to reduce the use of conventional power generation resources. Solar photovoltaic (PV) energy is widely used and has known a significant interest in last years. However, its dependence on the atmospheric conditions does not allow researchers to perform their experiences at the desired atmospheric parameters especially temperature (T) and irradiance (G). Furthermore, using real PV modules with controllable light source to carry out measurements and tests on PV applications such as Maximum Power Point Tracking (MPPT) and solar connected inverters is considerably inefficient and less flexible. Therefore, PV array emulator were appeared to deal with those limitations and to replace efficiently the use of real PV modules in laboratory tests by delivering similar PV characteristics and mimicking the electrical behavior of PV panels. In addition to the emulation of PV modules under varying environmental conditions, the emulation of PV array under partial shading conditions is an interesting topic especially for the aim of using PV array emulators in testing Global Maximum Power Point Tracking (GMPPT) techniques, which constitute nowadays a huge challenge for PV researchers. This paper presents the design of PV array emulator based on robust sliding mode controller, which is able to emulate accurately the PV array under both uniform solar insolation and partial shading conditions. Simulation results using Matlab Simulink software are presented and discussed so as to investigate the static and dynamic performances of the developed power device.

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1142
Author(s):  
Başoğlu

Photovoltaic (PV) modules experience some partial shading conditions (PSC) due to some various factors. In that kind of a condition, a few maximum power points (MPPs) possibly appear on the power-voltage (P-V) curve, which increases the tracking difficulties. It is known that maximum power point tracking (MPPT) may not be realized by hill climbing (HC) based conventional MPPT algorithms under PSCs. In this context, this paper presents a novel micro converter based algorithm that was developed by using P-V characteristics of PV modules. Unlike voltage or duty ratio scanning techniques, this paper introduces a new deciding method to determine the correct global MPP (GMPP) region. For this, the proposed method uses some duty ratios that were calculated corresponding to each MPP region. Thus, the initialization of duty ratio is done properly, which results in high tracking speed and accurate tracking of the GMPP. The other advantages of the proposed algorithm are structural simplicity, less computational burden, and ease of implementation with a basic microcontroller. The simulation results show that this algorithm has fast tracking capability and it manages to track GMPP for PSCs correctly, since it includes an artificial scanning procedure. Single ended primary inductance converter (SEPIC) is built in order to validate the proposed global maximum power point tracking (GMPPT) algorithm. The performance of the proposed GMPPT technique is verified by experimental studies. The results show that the proposed GMPPT technique is fast by up to five times than an adaptive full scanning strategy and improved IC algorithm. Furthermore, the proposed algorithm can be commercially used in micro converters, since it is compatible with small number of bypass diodes in a module.


Sign in / Sign up

Export Citation Format

Share Document