scholarly journals The Complete Proof of the Riemann Hypothesis

Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We show there is a contradiction just assuming the possible smallest counterexample $n > 5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n > 5040$ and thus, the Riemann Hypothesis is true.

2021 ◽  
Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove that the Robin inequality is true for all $n > 5040$ which are not divisible by any prime number between $2$ and $953$. Using this result, we show there is a contradiction just assuming the possible smallest counterexample $n > 5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n > 5040$ and thus, the Riemann Hypothesis is true.


Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove that the Robin inequality is true for all $n > 5040$ which are not divisible by any prime number between $2$ and $953$. Using this result, we show there is a contradiction just assuming the possible smallest counterexample $n > 5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n > 5040$ and thus, the Riemann Hypothesis is true.


2021 ◽  
Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove that the Robin inequality is true for all $n > 5040$ which are not divisible by any prime number between $2$ and $953$. Using this result, we show there is a contradiction just assuming the possible smallest counterexample $n > 5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n > 5040$ and thus, the Riemann Hypothesis is true.


2021 ◽  
Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems and it is one of the Clay Mathematics Institute's Millennium Prize Problems. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n> 5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is most likely true.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1}>e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}>2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


2021 ◽  
Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove in another paper that the Robin inequality is true for all $n > 5040$ which are not divisible by any prime number between $2$ and $953$. Using this result, we show there is a contradiction just assuming the possible smallest counterexample $n > 5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n > 5040$ and thus, the Riemann Hypothesis is true.


Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) &lt; e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n &gt; 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. Let $q_{1} = 2, q_{2} = 3, \ldots, q_{m}$ denote the first $m$ consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer. If the Riemann Hypothesis is false, then there are infinitely many Hardy-Ramanujan integers $n &gt; 5040$ such that Robin inequality does not hold and $n &lt; (4.48311)^{m} \times N_{m}$, where $N_{m} = \prod_{i = 1}^{m} q_{i}$ is the primorial number of order $m$.


Author(s):  
Lawrence C. Washington ◽  
Ambrose Yang

Robin’s criterion states that the Riemann hypothesis is equivalent to [Formula: see text] for all integers [Formula: see text], where [Formula: see text] is the sum of divisors of [Formula: see text] and [Formula: see text] is the Euler–Mascheroni constant. We prove that the Riemann hypothesis is equivalent to the statement that [Formula: see text] for all odd numbers [Formula: see text]. Lagarias’s criterion for the Riemann hypothesis states that the Riemann hypothesis is equivalent to [Formula: see text] for all integers [Formula: see text], where [Formula: see text] is the [Formula: see text]th harmonic number. We establish an analogue to Lagarias’s criterion for the Riemann hypothesis by creating a new harmonic series [Formula: see text] and demonstrating that the Riemann hypothesis is equivalent to [Formula: see text] for all odd [Formula: see text]. We prove stronger analogues to Robin’s inequality for odd squarefree numbers. Furthermore, we find a general formula that studies the effect of the prime factorization of [Formula: see text] and its behavior in Robin’s inequality.


2021 ◽  
Author(s):  
Frank Vega

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma } \times n \times \log \log n$ holds for all $n > 5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We show that the Robin inequality is true for all $n > 5040$ which are not divisible by any prime number between $2$ and $953$. We prove that the Robin inequality holds when $\frac{\pi^{2}}{6} \times \log\log n' \leq \log\log n$ for some $n>5040$ where $n'$ is the square free kernel of the natural number $n$. The possible smallest counterexample $n > 5040$ of the Robin inequality complies that necessarily $(\log n)^{\beta} < 1.2592\times\log(N_{m})$, where $N_{m} = \prod_{i = 1}^{m} q_{i}$ is the primorial number of order $m$ and $\beta = \prod_{i = 1}^{m} \frac{q_{i}^{a_{i}+1}}{q_{i}^{a_{i}+1}-1}$ when $n$ is an Hardy-Ramanujan integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$.


Sign in / Sign up

Export Citation Format

Share Document