scholarly journals The Use of Pointwise Encoding Time Reduction With Radial Acquisition MRA to Assess Middle Cerebral Artery Stenosis Pre- and Post-stent Angioplasty: Comparison With 3D Time-of-Flight MRA and DSA

2021 ◽  
Vol 8 ◽  
Author(s):  
Feifei Zhang ◽  
Yuncai Ran ◽  
Ming Zhu ◽  
Xiaowen Lei ◽  
Junxia Niu ◽  
...  

Background and Purpose: 3D pointwise encoding time reduction magnetic resonance angiography (PETRA-MRA) is a promising non-contrast magnetic resonance angiography (MRA) technique for intracranial stenosis assessment but it has not been adequately validated against digital subtraction angiography (DSA) relative to 3D-time-of-flight (3D-TOF) MRA. The aim of this study was to compare PETRA-MRA and 3D-TOF-MRA using DSA as the reference standard for intracranial stenosis assessment before and after angioplasty and stenting in patients with middle cerebral artery (MCA) stenosis.Materials and Methods: Sixty-two patients with MCA stenosis (age 53 ± 12 years, 43 males) underwent MRA and DSA within a week for pre-intervention evaluation and 32 of them had intracranial angioplasty and stenting performed. The MRAs' image quality, flow visualization within the stents, and susceptibility artifact were graded on a 1–4 scale (1 = poor, 4 = excellent) independently by three radiologists. The degree of stenosis was measured by two radiologists independently on DSA and MRAs.Results: There was an excellent inter-observer agreement for stenosis assessment on PETRA-MRA, 3D-TOF-MRA, and DSA (ICCs > 0.90). For pre-intervention evaluation, PETRA-MRA had better image quality than 3D-TOF-MRA (3.87 ± 0.34 vs. 3.38 ± 0.65, P < 0.001), and PETRA-MRA had better agreement with DSA for stenosis measurements compared to 3D-TOF-MRA (r = 0.96 vs. r = 0.85). For post-intervention evaluation, PETRA-MRA had better image quality than 3D-TOF-MRA for in-stent flow visualization and susceptibility artifacts (3.34 ± 0.60 vs. 1.50 ± 0.76, P < 0.001; 3.31 ± 0.64 vs. 1.41 ± 0.61, P < 0.001, respectively), and better agreement with DSA for stenosis measurements than 3D-TOF-MRA (r = 0.90 vs. r = 0.26). 3D-TOF-MRA significantly overestimated the stenosis post-stenting compared to DSA (84.9 ± 19.7 vs. 39.3 ± 13.6%, p < 0.001) while PETRA-MRA didn't (40.6 ± 13.7 vs. 39.3 ± 13.6%, p = 0.18).Conclusions: PETRA-MRA is accurate and reproducible for quantifying MCA stenosis both pre- and post-stenting compared with DSA and performs better than 3D-TOF-MRA.

2008 ◽  
Vol 30 (6) ◽  
pp. 509-514 ◽  
Author(s):  
Fabrice Vuillier ◽  
Elisabeth Medeiros ◽  
Thierry Moulin ◽  
Francoise Cattin ◽  
Jean-Francois Bonneville ◽  
...  

2021 ◽  
Vol 84 (2) ◽  
pp. 119-123
Author(s):  
Mami Ishikawa ◽  
Satoshi Terao ◽  
Hiroshi Kagami ◽  
Makoto Inaba ◽  
Heiji Naritaka

<b><i>Background:</i></b> Patients with moyamoya disease often develop cerebral infarction and hemorrhage, but the ischemic and hemorrhagic subtypes are difficult to diagnose prior to disease onset. We aimed to differentiate the ischemic and hemorrhagic subtypes of moyamoya disease by analyzing the intralateral and perilateral ventricular arteries on the original axial magnetic resonance angiography (MRA) images. <b><i>Methods:</i></b> We retrospectively analyzed the intralateral and perilateral ventricular arteries on the original axial time-of-flight (TOF)-MRA images of 18 patients with hemorrhagic moyamoya disease, 25 patients with ischemic moyamoya disease, and 22 control patients with unruptured aneurysms. <b><i>Results:</i></b> There were significantly more intralateral and perilateral ventricular arteries on the original axial MRA images in the patients with hemorrhagic moyamoya disease (6.3 ± 2.7) than in those with ischemic moyamoya disease (0.8 ± 0.9) and those with unruptured aneurysms (0.4 ± 0.8). <b><i>Conclusion:</i></b> The intralateral and perilateral ventricular arteries on the original axial TOF-MRA images might suggest the hemorrhagic type of moyamoya disease prior to onset.


2015 ◽  
Vol 56 (6) ◽  
pp. 1686 ◽  
Author(s):  
Hyo Jung Seo ◽  
Jefferson R. Pagsisihan ◽  
Jin Chul Paeng ◽  
Seung Hong Choi ◽  
Gi Jeong Cheon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document