tof mra
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 84)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Shaozhi Zhao ◽  
Qi Zhao ◽  
Yuming Jiao ◽  
Hao Li ◽  
Jiancong Weng ◽  
...  

Objectives: To investigate the association between radiomics features and epilepsy in patients with unruptured brain arteriovenous malformations (bAVMs) and to develop a prediction model based on radiomics features and clinical characteristics for bAVM-related epilepsy.Methods: This retrospective study enrolled 176 patients with unruptured bAVMs. After manual lesion segmentation, a total of 858 radiomics features were extracted from time-of-flight magnetic resonance angiography (TOF-MRA). A radiomics model was constructed, and a radiomics score was calculated. Meanwhile, the demographic and angioarchitectural characteristics of patients were assessed to build a clinical model. Incorporating the radiomics score and independent clinical risk factors, a combined model was constructed. The performance of the models was assessed with respect to discrimination, calibration, and clinical usefulness.Results: The clinical model incorporating 3 clinical features had an area under the curve (AUC) of 0.71. Fifteen radiomics features were used to build the radiomics model, which had a higher AUC of 0.78. Incorporating the radiomics score and clinical risk factors, the combined model showed a favorable discrimination ability and calibration, with an AUC of 0.82. Decision curve analysis (DCA) demonstrated that the combined model outperformed the clinical model and radiomics model in terms of clinical usefulness.Conclusions: The radiomics features extracted from TOF-MRA were associated with epilepsy in patients with unruptured bAVMs. The radiomics-clinical nomogram, which was constructed based on the model incorporating the radiomics score and clinical features, showed favorable predictive efficacy for bAVM-related epilepsy.


Author(s):  
Tolibdzhon A. Akhadov ◽  
Ekaterina S. Zaytseva ◽  
Alisher D. Mamatkulov ◽  
Olga V. Bozhko ◽  
Ilya A. Melnikov ◽  
...  

Introduction. In MRI, the difference in sensitivity between tissues is used to obtain images weighted by the inhomogeneity of the magnetic field termed susceptibility-weighted imaging (SWI) and a high-resolution 3D radiofrequency gradient echo scan with full speed compensation is applied. The aim was to determine the features of lesions caused by traumatic brain injury in children using the SWI sequence. Materials and methods. 535 TBI children aged two months up to 18 years old (average age 9.58 ± 1.5) were studied. There were 325 boys (60.7%), 210 girls (39.3%). MRI was performed without and with intravenous contrast on a Phillips Achieva 3 T scanner with T1- and T2WI, 2D and 3D images, FLAIR, magnetic resonance angiography (TOF MRA), SWI, and DW/DTI, MRS and fMRI, SWI were used for visualization of DAI. Results. Patients included children with severe TBI - 178 (33.3%), moderate TBI - 172 (32.1%) and mild TBI - 185 (34.6%). Of the 535 injured children, 129 (24.1%) had MRI performed within the first 24 hours from the moment of injury, up to 48 hours - at 91 (17.0%), up to 72 hours - in 78 (14.6%) and up to 13 days - in 237 (44.3%). DAI foci at all degrees of TBI were detected in 422 (78.9%) children out of 535 children. Conclusion. SWI is a sensitive method for diagnosing brain lesions in TBI and significantly contributes to predicting outcomes in the early stages after trauma. The amount of brain lesions diagnosed by SWI correlates with the degree of injury according to the Glasgo Coma Scale. The study of the brain functional connections can inform about possible relationships between the localization of the SWI lesion and cognitive deficits, potentially providing an opportunity to use SWI in the hyperacute phase.


Author(s):  
Filiz Osmanodja ◽  
Jan F. Scheitz ◽  
Jochen B. Fiebach ◽  
Ramanan Ganeshan ◽  
Kersten Villringer

Abstract Objectives Extracranial stenosis of the internal carotid artery (ICA) is an important cause of ischemic stroke and transient ischemic attack (TIA). It can be diagnosed using contrast-enhanced CT or MR angiography (MRA) as well as Doppler ultrasound. In this study, we assessed the diagnostic value of intracranial time-of-flight (TOF) MRA to predict extracranial ICA stenosis (ICAS). Methods We retrospectively analyzed consecutive patients with acute ischemic stroke or TIA and middle- (50–69%) or high-grade (70–99%) unilateral extracranial ICAS according to NASCET criteria assessed by ultrasound between January 2016 and August 2018. The control group consisted of patients without extracranial ICAS. Intraluminal signal intensities (SI) of the intracranial ICA on the side of the extracranial stenosis were compared to the contralesional side on TOF-MRA source images. SI ratios (SIR) of contralesional:lesional side were compared between groups. Results In total, 151 patients were included in the main analysis. Contralesional:lesional SIR in the intracranial C4-segment was significantly higher in patients with ipsilateral extracranial ICA stenosis (n = 51, median 74 years, 57% male) compared to the control group (n = 100, median 68 years, 48% male). Mean SIR was 1.463 vs. 1.035 (p < 0.001) for right-sided stenosis and 1.362 vs. 1.000 (p < 0.001) for left-sided stenosis. Receiver-operating characteristic curve demonstrated a cut-off value of 1.086 for right-sided [sensitivity/specificity 75%/81%; area under the curve (AUC) 0.81] and 1.104 for left-sided stenosis (sensitivity/specificity 70%/84%; AUC 0.80) in C4 as a good predictor for high-grade extracranial ICAS. Conclusions SIR on TOF-MRA can be a marker of extracranial ICAS.


Author(s):  
Rami Fakih ◽  
Alberto Miller ◽  
Ashrita Raghuram ◽  
Sebastian Herrera ◽  
Sedat Kandemirli ◽  
...  

Introduction : Current imaging modalities might underestimate the presence and severity of intracranial atherosclerosis (ICAD). High resolution vessel wall imaging (HR‐VWI) MRI emerged as a powerful tool to diagnose plaques not detected on routine imaging. We aim to compare different imaging modalities (HR‐VWI MRI; digital subtraction angiogram (DSA); Time‐of‐flight (TOF) MRA; and CTA) in the identification and characterization of intracranial atherosclerotic culprit plaques. Methods : Patients diagnosed with ICAD were prospectively imaged with HR‐VWI MRI. Culprit plaques were identified based on the likelihood of causing the stroke. Using cross‐sectional images of intracranial vessels, regions of interest (ROI) were delineated. Then, diameters and ROI areas were measured for the purpose of calculating the following variables: degree of stenosis (DS) at the plaque level, plaque burden (PB), and remodeling index (RI). Additional imaging modalities (DSA, TOF MRA, and CTA) were identified retrospectively for each patient. The sensitivity of detecting a culprit plaque as well as the correlations between the different variables were analyzed for each modality. Linear regression analysis was used to determine the association of DS with PB and RI. Interobserver agreement on the determination of a culprit plaque on every imaging modality was evaluated. Results : A total of 44 patients who underwent HR‐VWI had ICAD and were included in the final analysis. Of those, 34 had CTA, 18 had TOF‐MRA, and 18 had DSA. Using HR‐VWI as gold standard, the sensitivity for culprit plaque detection was 88% for DSA, 78% for TOF MRA, and 76% for CTA. We found no difference between the DS in all four modalities using measured cross‐sectional diameters, but difference was found when measuring ROI areas to calculate DS. There was a significant positive correlation between PB and DS on HR‐VWI MRI (p<0.001), but not on the DSA (p = 0.168), MRA (p = 0.144), or CTA (p = 0.253), and a significant negative correlation between RI and DS on HR‐VWI MRI (p = 0.003), but not on DSA (p = 0.783), MRA (p = 0.405), or CTA (p = 0.751). PB and RI predicted the degrees of stenosis on HR‐VWI, but not on the other modalities. There was good inter‐rater agreement for culprit plaque detection on HR‐VWI (k = 0.48, p = 0.001), but no agreement was found on the other modalities. Conclusions : HR‐VWI MRI can locate otherwise undetectable plaques on conventional imaging through the ability to measure plaque burden, an essential component for characterization of plaques severity and a strong predictor of stenosis. HR‐VWI also showed more accurate measurements of degree of stenosis through measurement of ROI areas, and had good inter‐rater agreement for accurate plaque detection, compared to DSA, MRA, and CTA.


2021 ◽  
Vol Volume 14 ◽  
pp. 3421-3428
Author(s):  
Hong Duc Pham ◽  
Thu Ha Dang ◽  
Trung Kien Duong ◽  
Trung Thanh Dinh ◽  
Van Giang Bui ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sangwoo Kim ◽  
Chulhyun Lee

AbstractThis study aimed to apply minimum-time variable-rate selective excitation (MinVER) to a presaturation pulse (PSP) with a high flip angle on 7 T time-of-flight magnetic resonance angiography (7T TOF-MRA), to attain a superior vessel-to-tissue contrast (VTCR), short acquisition time, and minor off-resonance effect. An altered PSP modified by using the 90° flip angle (FA)-MinVER was implemented in the 7 T TOF-MRA, and its performance was evaluated with a signal profile and vessel-tissue contrast ratios and compared to the conventional PSP and 45 FA-TOF. The 90 FA-MinVER showed a similar signal profile to that of the conventional PSP and improved the vessel-tissue contrast ratios (0.313 ± 0.80) compared to all conventional types (45 FA-TOF: 0.088 ± 0.84, 90 FA-TOF: 0.203 ± 0.72). Moreover, this noteworthy approach achieved substantially reduced total acquisition time (5 min and 55 s) with a short repeat-to-time (28 ms), indicating that at the 7 T TOF-MRA, the 90 FA-MinVER could be applied by default to suppress the venous signals regardless of individual human status and the specific absorption ratio constraint and with rapid imaging. Ultimately, its application could also help to observe subtle microvascular changes in the early stages and serve as key biomarkers in various vascular diseases.


2021 ◽  
Author(s):  
Takeshi Hara ◽  
Tetsu Satow ◽  
Eika Hamano ◽  
Naoki Hashimura ◽  
Masatake Sumi ◽  
...  

Abstract Background The rate of recanalization after coil embolization for unruptured intracranial aneurysms (UIAs) is reported to occur around 11.3-49%. Aim of this study is to investigated the factors that influence the recanalization after coil embolization for unruptured intracranial aneurysms (UIAs) in our institution. Methods We retrospectively investigated 307 UIAs in 296 patients treated at our institution between April 2004 and December 2016. The stent used cases were excluded. Cerebral angiography and 3D TOF MRA were used for evaluation of the postoperative occlusion status. Volume embolization ratio (VER), aneurysmal size, neck width, and aspect ratio (AR) were compared between the recanalized and non-recanalized groups. Results The mean follow-up period ranged from 6 to 172 months (mean: 79.0±39.8 months). Recanalization was noted in 87 (28.3%) aneurysms, and 19 (6.2%) aneurysms required retreatment. There was no aneurysmal rupture during the follow-up period. Univariate analysis showed that the aneurysm size (p < 0.001), neck width (p = 0.002), AR (p = 0.003), and VER (p = 0.027) were associated with recanalization. Multivariate logistic regression analysis showed that the AR (p =0.004) and VER (p =0.015) were significant predictors of recanalization. Conclusions In our study, AR and VER were significant predictors of recanalization after coil embolization for UIAs.


2021 ◽  
pp. 1-6
Author(s):  
Jae Ho Kim ◽  
Sung Jun Ahn ◽  
Mina Park ◽  
Yong Bae Kim ◽  
Bio Joo ◽  
...  

OBJECTIVE Metallic susceptibility artifact due to implanted clips is a major limitation of using 3D time-of-flight magnetic resonance angiography (TOF-MRA) for follow-up imaging of clipped aneurysms (CAs). The purpose of this study was to compare pointwise encoding time reduction with radial acquisition (PETRA) subtraction-based MRA with TOF-MRA in terms of imaging quality and visibility of clip-adjacent arteries for use in follow-up imaging of CAs. METHODS Sixty-two patients with 73 CAs were included retrospectively in this comparative study. All patients underwent PETRA-MRA after TOF-MRA performed simultaneously with 3-T MRI between September 2019 and March 2020. Two neuroradiologists independently compared images obtained with both MRA modalities to evaluate overall image quality using a 4-point scale and visibility of the parent artery and branching vessels near the clips using a 3-point scale. Subgroup analysis was performed according to the number of clips (less-clipped [1–2 clips] vs more-clipped [≥ 3 clips] aneurysms). The ability to detect aneurysm recurrence was also assessed. RESULTS Compared with TOF-MRA, PETRA-MRA showed acceptable image quality (score of 3.97 ± 0.18 for TOF-MRA vs 3.73 ± 0.53 for PETRA-MRA) and had greater visibility of the adjacent vessels near the CAs (score of 1.25 ± 0.59 for TOF-MRA vs 2.27 ± 0.75 for PETRA-MRA, p < 0.0001). PETRA-MRA had greater visibility of vessels adjacent to less-clipped aneurysms (score of 2.39 ± 0.75 for less-clipped aneurysms vs 2.09 ± 0.72 for more-clipped aneurysms, p = 0.014). Of 73 CAs, aneurysm recurrence in 4 cases was detected using PETRA-MRA. CONCLUSIONS This study demonstrated that PETRA-MRA is superior to TOF-MRA for visualizing adjacent vessels near clips and can be an advantageous alternative to TOF-MRA for follow-up imaging of CAs.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1742
Author(s):  
Sricharan S. Veeturi ◽  
Nandor K. Pinter ◽  
Andre Monteiro ◽  
Ammad A. Baig ◽  
Hamid H. Rai ◽  
...  

Background: VWE in contrast-enhanced magnetic resonance imaging (MRI) is a potential biomarker for the evaluation of IA. The common practice to identify IAs with VWE is mainly based on a visual inspection of MR images, which is subject to errors and inconsistencies. Here, we develop and validate a tool for the visualization, quantification and objective identification of regions with VWE. Methods: N = 41 3D T1-MRI and 3D TOF-MRA IA images from 38 patients were obtained and co-registered. A contrast-enhanced MRI was normalized by the enhancement intensity of the pituitary stalk and signal intensities were mapped onto the surface of IA models generated from segmented MRA. N = 30 IAs were used to identify the optimal signal intensity value to distinguish the enhancing and non-enhancing regions (marked by an experienced neuroradiologist). The remaining IAs (n = 11) were used to validate the threshold. We tested if the enhancement area ratio (EAR—ratio of the enhancing area to the IA surface-area) could identify high risk aneurysms as identified by the ISUIA clinical score. Results: A normalized intensity of 0.276 was the optimal threshold to delineate enhancing regions, with a validation accuracy of 81.7%. In comparing the overlap between the identified enhancement regions against those marked by the neuroradiologist, our method had a dice coefficient of 71.1%. An EAR of 23% was able to discriminate high-risk cases with an AUC of 0.7. Conclusions: We developed and validated a pipeline for the visualization and objective identification of VWE regions that could potentially help evaluation of IAs become more reliable and consistent.


2021 ◽  
Vol 8 ◽  
Author(s):  
Feifei Zhang ◽  
Yuncai Ran ◽  
Ming Zhu ◽  
Xiaowen Lei ◽  
Junxia Niu ◽  
...  

Background and Purpose: 3D pointwise encoding time reduction magnetic resonance angiography (PETRA-MRA) is a promising non-contrast magnetic resonance angiography (MRA) technique for intracranial stenosis assessment but it has not been adequately validated against digital subtraction angiography (DSA) relative to 3D-time-of-flight (3D-TOF) MRA. The aim of this study was to compare PETRA-MRA and 3D-TOF-MRA using DSA as the reference standard for intracranial stenosis assessment before and after angioplasty and stenting in patients with middle cerebral artery (MCA) stenosis.Materials and Methods: Sixty-two patients with MCA stenosis (age 53 ± 12 years, 43 males) underwent MRA and DSA within a week for pre-intervention evaluation and 32 of them had intracranial angioplasty and stenting performed. The MRAs' image quality, flow visualization within the stents, and susceptibility artifact were graded on a 1–4 scale (1 = poor, 4 = excellent) independently by three radiologists. The degree of stenosis was measured by two radiologists independently on DSA and MRAs.Results: There was an excellent inter-observer agreement for stenosis assessment on PETRA-MRA, 3D-TOF-MRA, and DSA (ICCs &gt; 0.90). For pre-intervention evaluation, PETRA-MRA had better image quality than 3D-TOF-MRA (3.87 ± 0.34 vs. 3.38 ± 0.65, P &lt; 0.001), and PETRA-MRA had better agreement with DSA for stenosis measurements compared to 3D-TOF-MRA (r = 0.96 vs. r = 0.85). For post-intervention evaluation, PETRA-MRA had better image quality than 3D-TOF-MRA for in-stent flow visualization and susceptibility artifacts (3.34 ± 0.60 vs. 1.50 ± 0.76, P &lt; 0.001; 3.31 ± 0.64 vs. 1.41 ± 0.61, P &lt; 0.001, respectively), and better agreement with DSA for stenosis measurements than 3D-TOF-MRA (r = 0.90 vs. r = 0.26). 3D-TOF-MRA significantly overestimated the stenosis post-stenting compared to DSA (84.9 ± 19.7 vs. 39.3 ± 13.6%, p &lt; 0.001) while PETRA-MRA didn't (40.6 ± 13.7 vs. 39.3 ± 13.6%, p = 0.18).Conclusions: PETRA-MRA is accurate and reproducible for quantifying MCA stenosis both pre- and post-stenting compared with DSA and performs better than 3D-TOF-MRA.


Sign in / Sign up

Export Citation Format

Share Document