Frontiers in Cardiovascular Medicine
Latest Publications


TOTAL DOCUMENTS

2655
(FIVE YEARS 2603)

H-INDEX

31
(FIVE YEARS 29)

Published By Frontiers Media Sa

2297-055x
Updated Friday, 03 December 2021

2021 ◽  
Vol 8 ◽  
Author(s):  
Qi Zheng ◽  
Hanzhou Wang ◽  
Wei Hou ◽  
Ying Zhang

Background: There is a large amount of evidence that anti-angiogenic drugs are effective safe. However, few studies have evaluated the specific effects of anti-angiogenic drugs on myocardial enzyme injury biomarkers: aspartate aminotransferase (AST), lactic dehydrogenase (LDH), creatine kinase (CK) and creatine kinase isoenzyme (CK-MB). The purpose of our study was to determine whether anti-angiogenic drugs serum AST, LDH, CK, and CK-MB activities of cancer patients treated with anti-angiogenic drugs.Methods: This study retrospectively analyzed 81 cancer patients. Patients who had used anti-angiogenic drugs were selected. Serum AST, LDH, CK, and CK-MB activities were measured before and after treatment with anti-angiogenic drugs for 3 weeks.Results: A total of 16 cancer types were analyzed. The distribution of the cancer types in the patients was mainly concentrated in lung, gastric, and colorectal cancers. The anti-angiogenic treatment markedly increased AST, LDH, CK, and CK-MB activities by 32.51, 7.29, 31.25, and 55.56%, respectively in serum.Conclusions: Our findings suggest that patients, who had used anti-angiogenic drugs were likely to have elevated AST, LDH, and CK, indicators of myocardial muscle injury. Use of anti-angiogenic drugs should not be assumed to be completely safe and without any cardiovascular risks.


2021 ◽  
Vol 8 ◽  
Author(s):  
Luis M. Beltrán Romero ◽  
Antonio J. Vallejo-Vaz ◽  
Ovidio Muñiz Grijalvo

Elevated low-density lipoprotein-cholesterol (LDL-C) is a causal factor for the development of atherosclerotic cardiovascular disease (ASCVD); accordingly, LDL-C lowering is associated with a decreased risk of progression of atherosclerotic plaques and development of complications. Currently, statins play a central role in any ASCVD management and prevention strategies, in relation to their lipid-lowering action and potentially to pleiotropic effects. After coronary artery disease, stroke is the most frequent cause of ASCVD mortality and the leading cause of acquired disability, a major public health problem. There is often a tendency to aggregate all types of stroke (atherothrombotic, cardioembolic, and haemorrhagic), which have, however, different causes and pathophysiology, what may lead to bias when interpreting the results of the studies. Survivors of a first atherothrombotic ischemic stroke are at high risk for coronary events, recurrent stroke, and vascular death. Although epidemiological studies show a weak relationship between cholesterol levels and cerebrovascular disease as a whole compared with other ASCVD types, statin intervention studies have demonstrated a decrease in the risk of stroke in patients with atherosclerosis of other territories and a decrease in all cardiovascular events in patients who have had a stroke. The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial demonstrated the benefit of high doses of atorvastatin in the secondary prevention of ischemic stroke. In this review, we discuss the evidence, use and recommendations of statins in the primary and secondary prevention of stroke, and their role in other scenarios such as the acute phase of ischemic stroke, cerebral hemorrhage, cardioembolic stroke, small vessel disease, and cognitive impairment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Giovanni Monizzi ◽  
Luca Grancini ◽  
Paolo Olivares ◽  
Antonio L. Bartorelli

Background: Left ventricle (LV) assist devices may be required to stabilize hemodynamic status during complex, high-risk, and indicated procedures (CHIP). We present a case in which elective hemodynamic support with the Impella CP device was essential to achieve complete revascularization with PCI in a patient with complex multivessel disease and severely depressed LV function.Case Summary: A 45-year-old male with no previous history of cardiovascular disease presented to the emergency department for new onset exertional dyspnoea. Echocardiography showed severely depressed LV function (EF 27%) that was confirmed with cardiac magnetic resonance. Two chronic total occlusions (CTOs) of the proximal right coronary artery (RCA) and left circumflex coronary artery (LCx) were found at coronary angiography. After Heart Team evaluation, PCI with Impella hemodynamic support was planned. After crossing and predilating the CTO of the LCx, ventricular fibrillation (VF) occurred. No direct current (DC) shock was performed because the patient was conscious thanks to the support provided by the Impella pump. About 1 min later, spontaneous termination of VF occurred. Afterwards, the two CTOs were successfully treated with good result and no complications. Recovery of LV function was observed at discharge. At 9 months, the patient had no symptoms and echocardiography showed an EF of 60%.Discussion: In this complex high-risk patient, hemodynamic support was essential to allow successful PCI. It is remarkable that the patient remained conscious and hemodynamically stable during VF that spontaneously terminated after 1 min, likely because the Impella pump provided preserved coronary perfusion and LV unloading. This case confirms the pivotal role of Impella in supporting CHIP, particularly in patients with multivessel disease and depressed LV function.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yilu Zhou ◽  
Weimin Tao ◽  
Fuyi Shen ◽  
Weijia Du ◽  
Zhendong Xu ◽  
...  

Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Li ◽  
Yi Zhang ◽  
Qin Luo ◽  
Qing Zhao ◽  
Qixian Zeng ◽  
...  

Background: The hemodynamic results of balloon pulmonary angioplasty vary among patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Previous studies revealed that microvasculopathy accounted for residual pulmonary hypertension after pulmonary endarterectomy, which could be reflected by the diffusing capacity for carbon monoxide (DLCO). We aimed to identify whether the DLCO could predict the BPA response.Materials and Methods: We retrospectively analyzed 75 consecutive patients with inoperable CTEPH who underwent BPA from May 2018 to January 2021 at Fuwai Hospital. According to the hemodynamics at follow-up after the last BPA, patients were classified as “BPA responders” (defined as a mean pulmonary arterial pressure ≤ 30 mmHg and/or a reduction of pulmonary vascular resistance ≥ 30%) or “BPA nonresponders.”Results: At the baseline, BPA responders had significantly higher DLCO values than nonresponders, although the other variables were comparable. In BPA responders, the DLCO decreased after the first BPA session and then returned to a level similar to the baseline at follow-up. Conversely, the DLCO increased constantly from the baseline to follow-up in nonresponders. Multivariate logistic analysis showed that a baseline DLCO of <70% and a percent change in DLCO between the baseline and the period within 7 days after the first BPA session (ΔDLCO) of > 6% were both independent predictors of an unfavorable response to BPA. Receiver operator characteristic analysis showed that the combination of a baseline DLCO < 70% and ΔDLCO > 6% demonstrated a better area under the curve than either of these two variables used alone.Conclusions: A baseline DLCO < 70% and ΔDLCO > 6% could independently predict unfavorable responses to BPA. Measuring the DLCO dynamically facilitates the identification of patients who might have unsatisfactory hemodynamic results after BPA.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenwen Zhang ◽  
Xinlu Gao ◽  
Xiuxiu Wang ◽  
Desheng Li ◽  
Yiming Zhao ◽  
...  

Heart failure (HF) is the common consequences of various cardiovascular diseases, often leading to severe cardiac output deficits with a high morbidity and mortality. In recent years, light emitting diodes-based therapy (LEDT) has been widely used in multiple cardiac diseases, while its modulatory effects on cardiac function with HF still remain unclear. Therefore, the objective of this study was to investigate the effects of LED-Red irradiation on cardiac function in mice with HF and to reveal its mechanisms. In this study, we constructed a mouse model of HF. We found that LED-Red (630 nm) was an effective wavelength for the treatment of HF. Meanwhile, the application of LED-Red therapy to treat HF mice improved cardiac function, ameliorate heart morphology, reduced pulmonary edema, as well as inhibited collagen deposition. Moreover, LED-Red therapy attenuated the extent of perivascular fibrosis. Besides, LED-Red irradiation promoted calcium transients in cardiomyocytes as well as upregulated ATP synthesis, which may have positive implications for contractile function in mice with HF. Collectively, we identified that LED-Red exerts beneficial effects on cardiac function in HF mice possibly by promoting the synthesis of ATP.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yogamaya Mantha ◽  
Shutaro Futami ◽  
Shohei Moriyama ◽  
Michinari Hieda

The hemodynamic effects of aortic stenosis (AS) consist of increased left ventricular (LV) afterload, reduced myocardial compliance, and increased myocardial workload. The LV in AS patients faces a double load: valvular and arterial loads. As such, the presence of symptoms and occurrence of adverse events in AS should better correlate with calculating the global burden faced by the LV in addition to the transvalvular gradient and aortic valve area (AVA). The valvulo-arterial impedance (Zva) is a useful parameter providing an estimate of the global LV hemodynamic load that results from the summation of the valvular and vascular loads. In addition to calculating the global LV afterload, it is paramount to estimate the stenosis severity accurately. In clinical practice, the management of low-flow low-gradient (LF-LG) severe AS with preserved LV ejection fraction requires careful confirmation of stenosis severity. In addition to the Zva, the dimensionless index (DI) is a very useful parameter to express the size of the effective valvular area as a proportion of the cross-section area of the left ventricular outlet tract velocity-time integral (LVOT-VTI) to that of the aortic valve jet (dimensionless velocity ratio). The DI is calculated by a ratio of the sub-valvular velocity obtained by pulsed-wave Doppler (LVOT-VTI) divided by the maximum velocity obtained by continuous-wave Doppler across the aortic valve (AV-VTI). In contrast to AVA measurement, the DI does not require the calculation of LVOT cross-sectional area, a major cause of erroneous assessment and underestimation of AVA. Hence, among patients with LG severe AS and preserved LV ejection fraction, calculation of DI in routine echocardiographic practice may be useful to identify a subgroup of patients at higher risk of mortality who may derive benefit from aortic valve replacement. This article aims to elucidate the Zva and DI in different clinical situations, correlate with the standard indexes of AS severity, LV geometry, and function, and thus prove to improve risk stratification and clinical decision making in patients with severe AS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Daphné Doomun ◽  
Ianis Doomun ◽  
Sara Schukraft ◽  
Diego Arroyo ◽  
Selma Cook ◽  
...  

Background: The Academic Research Consortium have identified a set of major and minor risk factors in order to standardize the definition of a High Bleeding Risk (ACR-HBR).Aims: The aim of this study is to stratify the bleeding risk in patients included in the Cardio-Fribourg registry, according to the Academic Research Consortium for High Bleeding Risk (ACR-HBR) definition, and to report ischemic and hemorrhagic events at 2-year of clinical follow-up.Methods: Between 2015 and 2017, consecutive patients undergoing percutaneous coronary intervention were prospectively included in the Cardio-Fribourg registry. Patients were considered high (HBR) or low (LBR) bleeding risk depending on the ARC-HBR definition. Primary endpoints were hierarchical major bleeding events as defined by the Bleeding Academic Research Consortium (BARC) grade 3–5, and ARC patient-oriented major adverse cardiac events (POCE) at 2-year follow-up.Results: Follow-up was complete in 1,080 patients. There were 354 patients in the HBR group (32.7%) and 726 patients in the low-bleeding risk (LBR) group (67.2%). At 2-year follow-up, cumulative BARC 3–5 bleedings were higher in HBR (10.5%) compared to LBR patients (1.5%, p < 0.01) and the impact of HBR risk factors was incremental. At 2-year follow-up, POCE were more frequent in HBR (27.4%) compared to LBR group (18.2%, <0.01). Overall mortality was higher in HBR (14.0%) vs. LBR (2.9%, p < 0.01).Conclusions: ARC-HBR criteria appropriately identified a population at a higher risk of bleeding after percutaneous coronary intervention. An increased risk of bleeding is also associated with an increased risk of ischemic events at 2-year follow-up.


2021 ◽  
Vol 8 ◽  
Author(s):  
Severi Mulari ◽  
Arda Eskin ◽  
Milla Lampinen ◽  
Annu Nummi ◽  
Tuomo Nieminen ◽  
...  

Background: Although many pathological changes have been associated with ischemic heart disease (IHD), molecular-level alterations specific to the ischemic myocardium and their potential to reflect disease severity or therapeutic outcome remain unclear. Currently, diagnosis occurs relatively late and evaluating disease severity is largely based on clinical symptoms, various imaging modalities, or the determination of risk factors. This study aims to identify IHD-associated signature RNAs from the atrial myocardium and evaluate their ability to reflect disease severity or cardiac surgery outcomes.Methods and Results: We collected right atrial appendage (RAA) biopsies from 40 patients with invasive coronary angiography (ICA)-positive IHD undergoing coronary artery bypass surgery and from 8 patients ICA-negative for IHD (non-IHD) undergoing valvular surgery. Following RNA sequencing, RAA transcriptomes were analyzed against 429 donors from the GTEx project without cardiac disease. The IHD transcriptome was characterized by repressed RNA expression in pathways for cell–cell contacts and mitochondrial dysfunction. Increased expressions of the CSRNP3, FUT10, SHD, NAV2-AS4, and hsa-mir-181 genes resulted in significance with the complexity of coronary artery obstructions or correlated with a functional cardiac benefit from bypass surgery.Conclusions: Our results provide an atrial myocardium-focused insight into IHD signature RNAs. The specific gene expression changes characterized here, pave the way for future disease mechanism-based identification of biomarkers for early detection and treatment of IHD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Daisuke Harada ◽  
Hidetsugu Asanoi ◽  
Takahisa Noto ◽  
Junya Takagawa

Background: Influence of right ventricular diastolic function on the hemodynamics of heart failure (HF). We aimed to clarify the hemodynamic features of deep Y descent in the right atrial pressure waveform in patients with HF and preserved left ventricular systolic function.Methods: In total, 114 consecutive inpatients with HF who had preserved left ventricular systolic function (left ventricular ejection fraction ≥ 50%) and right heart catheterization were retrospectively enrolled in this study. The patients were divided into two groups according to right atrial pressure waveform, and those with Y descent deeper than X descent in the right atrial pressure waveform were assigned to the deep Y descent group. We enrolled another seven patients (two men, five women; mean age, 87 ± 6) with HF and preserved ejection fraction, and implanted a pacemaker to validate the results of this study.Results: The patients with deep Y descent had a higher rate of atrial fibrillation, higher right atrial pressure and mean pulmonary arterial pressure, and lower stroke volume and cardiac index than those with normal Y descent (76 vs. 7% p < 0.001, median 8 vs. 5 mmHg p = 0.001, median 24 vs. 21 mmHg p = 0.036, median 33 vs. 43 ml/m2p < 0.001, median 2.2 vs. 2.7 L/m2, p < 0.001). Multiple linear regression revealed a negative correlation between stroke volume index and pulmonary vascular resistance index (wood unit*m2) only in the patients with deep Y descent (estimated regression coefficient: −1.281, p = 0.022). A positive correlation was also observed between cardiac index and heart rate in this group (r = 0.321, p = 0.038). In the other seven patients, increasing the heart rate (from median 60 to 80/min, p = 0.001) significantly reduced the level of BNP (from median 419 to 335 pg/ml, p = 0.005).Conclusions: The hemodynamics of patients with HF with deep Y descent and preserved left ventricular systolic function resembled right ventricular restrictive physiology. Optimizing the heart rate may improve hemodynamics in these patients.


Sign in / Sign up

Export Citation Format

Share Document