scholarly journals Harmonic Analysis and Neutral-Point Potential Control of Interleaved Parallel Three-Level Inverters for Flywheel Energy Storage System

2022 ◽  
Vol 9 ◽  
Author(s):  
Zhongrui Li ◽  
Ziling Nie ◽  
Jie Xu ◽  
Huayu Li ◽  
Sheng Ai

Flywheel energy storage system is a popular energy storage technology, in which inverters are the center of electrical energy conversion, directly affecting the power capacity. Parallel operation of three-level inverters is an effective approach to achieve larger motor drive power and the interleaved operation can improve the harmonic characteristics. However, harmonic analysis models of the interleaved parallel three-level inverters are rare in the literature and how the neutral-point potential imbalance affects the harmonics characteristics has not been discussed. This article establishes the harmonic calculation for balanced and unbalanced neutral-point potential through the five-level voltage capability of the interleaved parallel three-level inverters. Moreover, a neutral-point potential control method based on zero-sequence voltage injection is proposed. The implement process of the method is proposed, and how the operating frequency affect the ability of the neutral-point potential balance is studied. Finally, the simulation and experiment results verify the feasibility and practicability of the established harmonic analysis models and the neutral-point potential control method.

2013 ◽  
Vol 448-453 ◽  
pp. 2903-2907
Author(s):  
You Ran Lv ◽  
Lei Wang ◽  
Jia Yi Xiang ◽  
Feng Yang ◽  
Xiao Qiang Du

The flywheel energy storage technology is a kind of method that converts electrical energy into kinetic energy in store. The flywheel energy storage system (FESS) is usually used for renewable energy system such as wind turbine generator system (WTGS) to adjust the quality of output power. Droop control is a kind of control technology to regulate the active power and reactive power in micro-grid. In this paper, we introduced a method to combine the droop control with FESS and designed the control topology. The droop control method was applied to control the part of inverter in FESS. By controlling the output frequency and the voltage amplitude of WTGS-FESS system, we can regulate the output of the inverter as a promotion in smoother active power and reactive power.


Sign in / Sign up

Export Citation Format

Share Document